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A Cartesian grid method has been developed for simulating two-dimensional un-
steady, viscous, incompressible flows with complex immersed boundaries. A finite-
volume method based on a second-order accurate central-difference scheme is used
in conjunction with a two-step fractional-step procedure. The key aspects that need
to be considered in developing such a solver are imposition of boundary conditions
on the immersed boundaries and accurate discretization of the governing equation
in cells that are cut by these boundaries. A new interpolation procedure is presented
which allows systematic development of a spatial discretization scheme that pre-
serves the second-order spatial accuracy of the underlying solver. The presence of
immersed boundaries alters the conditioning of the linear operators and this can slow
down the iterative solution of these equations. The convergence is accelerated by
using a preconditioned conjugate gradient method where the preconditioner takes
advantage of the structured nature of the underlying mesh. The accuracy and fidelity
of the solver is validated by simulating a number of canonical flows and the abil-
ity of the solver to simulate flows with very complicated immersed boundaries is
demonstrated. © 1999 Academic Press

Key Words:viscous incompressible flow; finite volume method; Cartesian grid
method; immersed boundaries.

1. INTRODUCTION

The conventional structured-grid approach to simulating flows with complex immer
boundaries is to discretize the governing equations on a curvilinear grid that conforms
boundaries. The main advantages of this approach are that imposition of boundary c
tions is greatly simplified, and furthermore, the solver can be easily designed soasto 1
tain adequate accuracy and conservation property. However, depending on the geom
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complexity of the immersed boundaries, grid generation and grid quality can be major
sues and usually, one has to resort to a multi-block approach in order to handle anytl
but the simplest geometries. Furthermore, transformation of the governing equations tc
curvilinear coordinate system results in a complex system of equations and this comple
can adversely impact the stability, convergence and operation count of the solver.

A different approach which is gaining popularity in recent years is the so-called Car
sian grid method where the governing equations are discretized on a Cartesian grid w
does not conform to the immersed boundaries. This greatly simplifies grid generation
also retains the relative simplicity of the governing equations in Cartesian coordinates
addition, this method also has a significant advantage over the conventional body-fi
approach in simulating flows with moving boundaries, complicated shapes, or topolog
changes [31]. Since the underlying Cartesian grid does not depend on the location of
immersed boundary, there is no need for remeshing strategies. In fact, a moving boun
algorithm has been implemented in conjunction with a Cartesian grid algorithm that |
been used successfully for diffusion-dominated solidification problems [37] which invol
complex time evolving moving boundaries.

The obvious complication in using Cartesian grid methods is in the imposition of bour
ary conditions at the immersed boundaries. In particular, since the immersed bounc
can cut through the underlying Cartesian mesh in an arbitrary manner, the main challe
is to construct a boundary treatment which does not adversely impact the accuracy
conservation property of the underlying numerical solver. This is especially critical for vi
cous flows where inadequate resolution of boundary layers which form on the immer
boundaries can reduce the fidelity of the numerical solution. Consequently, Cartesian
methods have been used extensively for Euler flows [1, 3, 4, 10, 24, 28] whereas af
cations to viscous flows are relatively scarce [17, 31, 35, 36]. It should be pointed
that there is another related class of methods, the so-called “immersed boundary” m
ods in which the immersed boundary is represented by a discrete set of body or sur
forces. These methods have also been used successfully for viscous flow computations
25, 42]; however, one disadvantage of these methods is that in most cases the imme
boundary is smeared across a few cell-widths. This is mainly due to problems associ
with representing a point force on a finite size mesh. As shown by Udaykeinadi[37]
this smearing can adversely impact the dynamics of flows where the boundary motio
closely coupled with the evolution of surrounding fluid field. Similarly, in the so-calle
volume-of-fluid (VOF) method [30] too, the process of interface reconstruction leads t«
non-smooth interface. In contrast to these approaches, in Cartesian grid methods the bc
ary is represented as a sharp interface and this has advantages for high Reynolds nt
flows as well as flows with strong two-way coupling between the flow and the bounds
motion.

Here we have developed a Cartesian grid method which is well suited for simulati
unsteady, viscous, incompressible flows. The current solver shares some features
the solver of Udaykumaet al. [35] particularly in terms of the description and identi-
fication of the immersed boundary and the use of a finite-volume approach. Howeve
number of key advances have been made in terms of the capability of the solver. Tt
include: (1) A fractional-step scheme [8] which results in a fast solution of unsteady flov
(2) adoption of a new compact interpolation scheme near the immersed boundaries
allows us to retain second-order accuracy and conservation property of the solver,
(3) use of a preconditioned conjugate gradient method for solving the pressure Pois
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equation which takes advantage of the underlying structured nature of the mesh and v
substantially accelerates the convergence of the pressure Poisson equation.

The current paper will focus on describing these and other salient features of the nume
methodology, validating the accuracy and fidelity of the approach and demonstrating
capabilities of the solver in some complex configurations.

2. NUMERICAL METHODOLOGY

In this section we will first describe the underlying solver for a Cartesian mesh wi
out considering the immersed boundaries. Following this, we will discuss in detall
modifications that have to be made in the solver to account for immersed boundaries.

Fractional-Step Method

The governing equation is the unsteady, viscous, incompressible Navier—Stokes eqL
written in terms of the primitive variables. This equation is discretized on a Cartesian rr
using a cell-centered colocated (non-staggered) arrangement [12] of the primitive varic
(u, p). The integral form of the non-dimensionalized governing equations is given by

mass conservation /u -AdS=0 ()
cs
momentum 9 udv+/u(u.ﬁ)dsz—/pﬁds+i/w.ﬁds )
conservation ot Re
cv Ccs Ccs cs

This is used as the starting point for deriving a second-order accurate finite-volume me
Inthe above equatiotwandcsdenote the control-volume and control-surface, respective
andn is a unit vector normal to the control-surface. The above equations are to be so
with u(x, t) = v(x, t) on the boundary of the flow domain wheris the prescribed boundary
velocity. A second-order accurate, two-step fractional step method [8, 20, 43] is usec
advancing the solution in time. In this time-stepping scheme, the solution is advar
from time level 'n” to “n+ 1" through an intermediate advection-diffusion step whet
the momentum equations without the pressure gradient terms are first advanced in
A second-order Adams—Bashforth scheme is employed for the convective terms an
diffusion terms are discretized using an implicit Crank—Nicolson scheme. This elimine
the viscous stability constraint which can be quite severe in simulation of viscous flow
At this stage, in addition to the cell-center velocities which are denoted ke also
introduce face-center velocitié$. In a manner similar to a fully staggered arrangemer
only the component normal to the cell-face is computed and stored (see Fig. 1). The
center velocity is used for computing the volume flux from each cell in our finite-volur
discretization scheme. The advantage of separately computing the face-center velo
will be addressed later in this section. The semi-discrete form of the advection-diffus
equation for each cell shown in Fig. 1 can therefore be written as

> 2Re
cs

At
®)

cv cs
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FIG. 1. Schematic showing the underlying Cartesian mesh and arrangement of cell-center and face-ce
velocities.

whereu* is the intermediate cell-center velocity anchndcsdenote the volume and surface
of a cell, respectively. The velocity boundary condition imposed at this intermediate s
corresponds to that at the end of the full time-step, ive= v"**. Following the advection-
diffusion step, the intermediate face-center velotityis computed by interpolating the
intermediate cell-center velocity.

The advection-diffusion step is followed by the pressure-correction step

un+1 —u*
/TdVZ—/Vpn+1dV, (4)
cv cv

where we require that the final velocity field satisfy the integral mass conservation equa
given by

/(U”+1 -A)dS=0. (5)

This results in the following equation for pressure
n+1 A 1 E
(Vp )-ndS:E (U*-n)ds (6)
cs cs

which is the integral version of the pressure Poisson equation. Note that the press
correction step is represented by the inviscid equation (4) and is well posed only if
velocity component normal to the boundary is specified. Therefore the velocity bound
condition consistent with (4) is"** - N =v"*1. N whereN is the unit normal to the bound-
ary of the flow domain. It can be easily shown that this implies tRgp"™1) - N =0 be
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used as the boundary condition for Eq. (6). Once the pressure is obtained by solving
equation, both the cell-centard) and face-centerf€) velocities are updated separately ac

u™l = u* — At v pn+l)cc; U™t — U* — At v pn+1)fc- (7)

It should be pointed out that the pressure gradient computed at the face-centeris not s
an interpolated version of the pressure gradient at the cell-center. For instance with refe|
to Fig. 1 thex-direction pressure gradient at the cell center is computed as

(Op/9xX)p = (PE — Pw)/2AX 8

whereas the same gradient on the east face is given by

(0p/9xX)e = (PE — Pp)/AX. 9

It follows thatU"*? is not simply an interpolated version of the face-center velodittes.

In fact the pressure equation (6) is discretized in terms of the pressure gradients o
cell faces and with the separate update of the face-center velocity as shown in (7), ¢
satisfaction of (5) is guaranteed.

There are many advantages to introducing the face-center velocities into the fractic
step scheme. In conventional colocated methods, the solution of the pressure Poisson
tion and satisfaction of the continuity constraint can be quite problematic. As shown cle
in Ferziger and Peric [12] for colocated methods, if a compact stencil is used for p
sure then the pressure does not suffer from grid-to-grid oscillation but the final velo
does not satisfy the divergence free constraint exactly. On the other hand, if a consi
non-compact stencil is used for pressure then the divergence constraint can be satist
machine precision. However, in this case the pressure is subject to grid-to-grid oscillati
A similar observation has been made in the context of the finite element method by No
and Comini [22]. One remedy is to use a fully staggered arrangement of the varia
[23]. However, this can increase the complexity of the solver since each of the momer
and pressure equations have to be discretized at different locations. This is more so i
Cartesian grid method since the discretization of the cells near the boundary can be
extremely complicated with a fully staggered arrangement. Other remedies have also
proposed for tackling these problems that arise in a colocated arrangement [29, 32, 3:
these have been employed mainly in steady flow computations.

Zanget al. [43] have introduced a new colocated approach for solution of incompress
flows which seems especially suitable for unsteady flows. In their approach, the Carte
velocity components are colocated with pressure at the cell-center and the mome
equation solved only at the cell-center. However, the intermediate cell-center velocit
used to compute the volume fluxes on the cell faces and subsequently, the pressure corr
is applied separately to the cell-center velocities and the volume fluxes. In an analol
manner, we define a face-center velocity which when multiplied by the face area give
the volume flux and this face-center velocity is updated separately in the pressure corre
step. This procedure ensures that even with a compact stencil, the integral constraint
satisfied to machine precision at the end of the full time step. The problems of grid-to-
pressure oscillations and mass conservation error are therefore eliminated simultane
Furthermore, this updated face-center velocity is used to compute the convective flux



214 YE ET AL.

next time step as shown in (3). Since the volume flux is conserved exactly, this ensures tl
uniform velocity field will convect on the grid without generating spurious gradients. Zar
et al. [43] have used this procedure in conjunction with a curvilinear mesh solver for larg
eddy simulation of turbulent flows and have found that the solver performs satisfacto
for high Reynolds number flows.

This approach therefore has some of the most desirable features of a fully stagg
arrangement. The main advantage of this approach over the fully staggered approa
that the momentum and pressure equations are all solved at the same location. Howev
apparent from (8), unlike a fully staggered arrangement, in the current approach the
center velocity is not coupled strongly to the pressure gradient over the cell. Furthermore
fully staggered arrangement, the computed velocity components satisfy both the momer
as well as continuity equations. In contrast, in the the current approach the velocity fi
is represented by two different but closely related variables, the cell-center velocity wh
satisfies the momentum equations and the face-center velocity which satisfies the contil
constraint.

Inclusion of Immersed Boundaries

The underlying approach for a Cartesian grid without immersed boundaries has b
outlined in the previous subsection. We will now describe how this approach is imp
mented in a situation where some of the Cartesian cells are cut by immersed bound:
as shown in Figs. 2a and 2b. For the purpose of this discussion we assume that the
mersed boundary demarcates a fluid—solid boundary. However, in general, this methc
also applicable to flows with fluid—fluid boundaries. Furthermore, this paper focuses o
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FIG. 2. Schematic of computational domain with immersed boundaries. (a) Boundary cells with immers
boundary located south of cell center. (b) Boundary cells with immersed boundary located west of cell cel
(c) Typical reshaped trapezoidal boundary cells corresponding to case (a). (d) Typical boundary cells correspor
to case (b). Shaded arrows indicate fluxes that need special treatment.
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on two-dimensional applications. However, the overall methodology to be described |
is in principle extendable to three-dimensions.

The immersed boundary is first represented by a series of piecewise linear segrm
Based on this representation of the immersed boundary, we identify cells in the underl
Cartesian mesh that are cut by the boundary and determine the intersection of the imm
boundary with the sides of these cut cells. Next, cells cut by the immersed boundary w
cell-center lie in the fluid are reshaped by discarding the part of these cells that lies ir
solid. Pieces of cut cells whose center lie in the solid are absorbed by neighboring ¢
This results in the formation of control-volumes which are trapezoidal in shape as sh
in Figs. 2c and 2d. Details of this reshaping procedure can be found in Udayletralar
[36, 37].

Depending on the location and local orientation of the immersed boundary, trapezc
cells of a wide variety of dimensions can be formed. The key issue here is to eval
mass, convective and diffusive fluxes, and pressure gradients on the cell-faces of
trapezoidal cells from the neighboring cell-center values with adequate accuracy suct
global second-order accuracy of the solver will be preserved. Furthermore, the cul
Cartesian grid method has been developed for unsteady viscous flows at moderately
Reynolds numbers. In such flows we expect that relatively thin boundary layers will
generated in the vicinity of the immersed boundary. These boundary layers are not
regions of high gradients but quite often, they are also the mostimportant features of the
field. Thus, accurate discretization of the equations is especially important in the boun
layers. Since all the trapezoidal cells are expected to lie within these boundary layer, t
another reason why adequate local accuracy is desirable for these cells.

For a uniform Cartesian mesh, the fluxes and pressure gradients on the face-centers
computed to second-order accuracy by a simple linear approximation between neighb
cell-centers. This however is not the case for a trapezoidal boundary cell since the ¢
of some of the faces of such a cell (marked by a shaded arrow in Figs. 2c and 2d)
not lie in a location which puts it in the middle of neighboring cell-centers where a line
approximation would give second-order accurate estimate of the gradients. Furthern
some of the neighboring cell-centers do not even lie on the same side of the imme
boundary and therefore cannot be used in the differencing procedure. Thus, not onl
we need a procedure for computing these face-center quantities which is accurate, wi
require that the procedure adopted be capable of systematically handling reshaped bou
cells with a wide range of shapes. Our solution has been to use a compact two-dimens
polynomial interpolating function which allows us to obtain a second-order accurate
proximation of the fluxes and gradients on the faces of the trapezoidal boundary cells
available neighboring cell-center values. The current interpolation scheme coupled
the finite-volume formulation guarantees that the accuracy and conservation property c
underlying algorithm is retained even in the presence of curved immersed boundaries

As shown in Eq. (3), a finite-volume discretization of Navier—Stokes equations requ
the estimation of surface integrals on the faces of each cell. The integrand (denoted he
f) can either involve the value or the normal derivative of a variable. An example of
former is the convective flux denoted hy¢v - 1) and of the latter, the diffusive flux given
by (C'V¢ - i) whereg is a generic scalar variable. In addition to this, the pressure equat
also requires evaluation of the normal pressure gradient. In order to estimate these st
integrals to second-order accuracy, the midpoint rule can be used and this requires ac
evaluation of the integrand at the center of the face. For regular cells which are away 1



216 YE ET AL.

® | i
liguid : !
I M-t RPXC1 S A
PN ]
--LE \ al---‘-.'-
NN e
. N7 Al )
(5) 1 .
// : solid |
O Points in the six-point stencil for fi,

FIG. 3. Schematic of interpolation for cell face values and derivative at boundary cells. (a) Various flux
required for trapezoidal boundary cell (b) trapezoidal region, and stencil used in comfing

the immersed boundary the integrand can be evaluated at the face-center to second-
accuracy in a straightforward manner by assuming a linear profile between nodes or
either side of the face. This is not the case for the trapezoidal boundary cells. Cons
the trapezoidal boundary celBCDE in Fig. 3a. The faced5C of the trapezoidal cell is
composed of two piecesd3 coming from the cellP and 5C coming from cellS. The
integral on this face can be decomposed as

/fdy:/fdy+/fdy. (10)

AC AB BC

A second-order approximation to this integral can then be obtained as

/ Fdy~ fu(ya— Y8) + Tou(Ys — Y0, (11)
AC

wheref,, and f,,are computed at the center of segmefisand3C, respectively. If on the
other hand, the face is cut by the immersed boundary such that it is smaller than a non
cell face, as in the case of fag¥ then the integral can be approximated as

/ Fdy~ fo(Ye — yo), (12)
DE

where fg is the flux computed at the center of the segni@ét For non-boundary cells,
these face-center values can be evaluated to second-order accuracy quite easily by a
approximation and we would therefore like to evaluife fsy, and fe to within second-
order accuracy also. Approximation &f to second-order accuracy is quite straightforwarc
andis done in the same way as for the face of anon-boundary cell. For instafpaegtires
the value ofp, this can be evaluated to second-order accuracy as

dw = pwiw + ¢p(1 — Aw), (13)
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where the linear interpolation factayy is defined as

Xp — X
aw = (14)
Xp — Xw
Alternatively, if f,, requires the normal gradientéfas it would for the diffusion or pressure
gradient terms, this can be approximated by a central-difference scheme as

(3_¢) _ ¢ —dw (15)

X Xp — Xw

This approximation is second-order accurate when the cell face is midway beRagch
W, i.e., when the mesh is uniform.

Evaluation offg,,or fe to second-order accuracy is somewhat more complicated. Expr
sions such as (13) or (15) cannot be used since in many instances some of the neighl
nodes lie inside the immersed boundary. For instance, for the situation shown in Fig. 3¢
south node is inside the immersed boundary and cannot be used in the evaludtign o
Even if neighboring nodes are available, as they are for the east face, it is not clear h
second-order accurate scheme can be constructed &iigrot located on the line joining
the neighboring cells centers and consequently, expressions such as (13) or (15) c
approximate this flux to second-order accuracy. Thus, a different approach is needed
for evaluating these fluxes.

Our approach is to express the flow variables in terms of a two-dimensional polynot
interpolating function in an appropriate region and evaluate the fluxes su&l, as fe
based on this interpolating function. For instance, in order to approxifgteve express
¢ in the shaded trapezoidal region shown in Fig. 3b in terms of a function that is linea
x and quadratic iry

¢ = C1XY? + CoY? + CaXy + C4Y + CsX + Cg, (16)

wherec; to cg are six unknown coefficients. i, involves the normal derivative @f, this
can be obtained by differentiating the interpolating function, i.e.,

99 _ ciy? + cay + s 17)
ax

The rationale for choosing (16) as the interpolating function for evaluatings as
follows: the objective here is to evaluate(/9x) at the center oBC to within atleast second-
order accuracy. Furthermore, we would like to do this with the most compact interpolar
as to minimize the size of the stencil required for the boundary cell. Clearly, a biquadr
interpolating function in the trapezoid shown in Fig. 3b would lead to second-order accu
evaluation of the derivative anywhere inside the trapezoid. However, a biquadratic func
has nine unknown coefficients and therefore requires a large nine-point stencil. It turn:
however that for the trapezoid shown in Fig. 3b, second-order accurate evaluation o
derivative on the cell face can be achieved by using an interpolating function that is quad
in y but only linear inx. This is becausBC is midway between the two parallel sides of the
trapezoidal and in a manner analogous to central-differencing, linear interpolation in
x-direction leads to second-order accurate evaluation of the derivative at this location
the other hand, this situation does not exist in yhdirection for the cell shown in Fig. 3b
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and therefore a quadratic interpolation is necessary in this direction in order to obtai
second-order accurate approximation ag (9x) at the center o5C. In Appendix 1, we
have demonstrated numerically that the linear-quadratic interpolating function showr
(16) does indeed result in second-order accurate evaluation of values and derivatives
line which is located midway between the two parallel sides of a trapezoid.

It can be seen in Fig. 3b that the sides of the trapezoid in which the interpolation
performed pass through four nodal points and two boundary points. Thus, the six unknc
coefficients in (16) can be expressed in terms of the valugsatfthese six locations. To
solve forc,, we obtain the following system of equations by expressingptlta the six
locations in terms of the linear-quadratic interpolating function:

¢ X2 Y2 oxiyi oy ox 1 C1
¢'2 _ [ XeY5 Y2 oXeY2 Y2 X2 1 C.Z . (18)
o6 XeYs Y& Xe¥6 Yo X 1 Cs

The coefficients can now be expressed in terms of valugsapthe six points by inverting
(18), i.e.,

6
Ch=>) bng;. n=12...86 (19)
j=1

whereb,; are the elements of the inverse of the Vandermonde matrix [15] in (18).
After c, is obtained, the value @f at center of3C is expressed in the form of

¢sw = Clxswygw + C2y52w + C3XswYsw + CaYsw + CsXsw + Cs (20)

and using (19) this can be rewritten as

6
Psw = Z(Xjfﬁj, (21)
i=1
where
oj = blj xswy§W+ b2j ySZW + b3j XswYsw + b4j Ysw + b5j Xsw + bGj . (22)

The value ofd¢/dx at center of3C is expressed as

d
(¢> = Clyszw+ C3Ysw+ Cs (23)
0X / qw

and using (19) this can be written as
3¢ 6
(5e) = e (24)
X / w =t
where

Bi = b1j Y2+ bzj Ysw+ bs;. (25)
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FIG. 4. Trapezoidal region and stencil used in computfag

Note thatw areg are coefficients that depend only on the mesh and the location and or
tation of the immersed boundary. Therefore these can be computed once at the begi
of the solution procedure. Subsequently, relationships such as (21) and (24) can be u:
the spatial discretization of the governing equations (3)—(7).

A similar interpolation procedure is also used for approximating-or this, a linear-
quadratic interpolant is used in the trapezoidal region shown in Fig. 4 and a relation
similar to (21) and (24) developed for approximatifig The six points contained in this
stencil are also shown in the figure. It should be pointed out that the north face of
particular cell being considered here does not need special treatment since face-center
and derivatives can be computed to second-order accuracy using a linear approxim:
However, in general there are also boundary cells which have their north or south face
by the immersed boundary (as shown in Fig. 2b). For these boundary cells too, the ¢
approach is used to evaluate the fluxes on these cut faces. The only difference here |
the interpolating function is linear iy and quadratic irx.

Now we turn to the calculation of the flux on cell fa€® which lies on the immersed
boundary as shown in Fig. 2a. The integrated flux on this face can again be evaluat
second-order accuracy using the midpoint rule and as before we would like to eval
the integrand at the center of faé® (denoted here byfi;) to second-order accuracy.
In general both convective and diffusive fluxes are needed on this face and this req
the approximation of variables value as well as the normal derivative at the cet®x. of
The value is usually available from a Dirichlet type boundary condition and hence
interpolation is required for this. Here we describe the approximation procedure for
normal derivative. The normal derivative on fa¢P can be decomposed as

0o _ g, 0o,

Ay + —n

= , 26
an  ox ay 7 (26)

wheref, andfy are the two components of the unit vector normal to &€ Since we

know the shape of the immersed boundégyandfy, are known. Therefore computation of
the normal flux requires estimation &p/0x andd¢/dy at the center of the line segment
CD. For the cell being considered heég,/0y is computed to second-order accuracy witl
relative ease by expressing thevariation along the vertical line in terms of a quadratic i
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y as
¢ = a1y? + ayy + aa. (27)

The coefficients in the quadratic can be expressed in terms of the valgest diie three
points indicated in Fig. 5a. Subsequently, the normal derivative at the center afffeise
evaluated as

) 3
() =2ayn+a =Y 1)¢;. (28)
ay int j=1

where agairtjy are coefficients which depend solely on the geometry of the boundary ce
Unlike the calculation o6 ¢ /dy for this cell, the calculation af¢ /9X is not straightfor-

ward. However, an approach consistent with the computatidig,cdnd fo can be used to
estimate the value of this derivative to desired accuracy. Consider the trapezoid show
Fig. 5b. Again, because thecoordinate of the center afD is midway between the two
parallel sides of this trapezoid, expressing the variable in this trapezoid in terms of an in
polating function which is linear in and quadratic iry allows us to obtain a second-order
accurate approximation 1@¢/dX)sy at the center of the line segmefb. The procedure
for this follows along lines similar to that shown f@#¢/9X)sy and we get the following
expression for th&-derivative on the interface,

310\ = .
(5), =2 =

where the coefficients] depend on the location and orientation of the immersed bounda
in the neighborhood of the cell under consideration. Finally we get an expression of
form

AN
(5n),, =204 @
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for the normal gradient wheng can be obtained from (26), (28), and (29). Thus we obta
a nine-point stencil for the flux on the interface and the points in this stencil are shc
in Figs. 5a and 5b. As can be seen from these figures, of these nine points, three
lie on the immersed boundary and their values are available from the prescribed bour
condition.

The overall solution procedure is as follows:

1. Determine the intersection of the immersed boundary with the Cartesian mesl

2. Using this information, reshape the boundary cells.

3. For each reshaped boundary cell, compute and store the coefficients shown in
(24), and (30).

4. Use these coefficients to develop discrete expressions and operators for the ve
terms in the discretized Navier—Stokes equations.

5. Advance the discretized equations in time.

Itshould be pointed outthat although most cells are four-sided trapezoidal cells, some
sided cells and three-sided triangular cells are also encountered. However, the discreti:
of the governing equations for these cells can also be handled within the framework o
current interpolation scheme. With all of these features, the current solver can in pri
ple, handle arbitrarily complex geometries. Furthermore, multiple immersed bodies ca
handled as easily as a single body. This is in contrast to the body fitted grid where the
topology can get quite complicated in the presence of multiple bodies. Finally, since
inside of the immersed boundary is also gridded, we also have the capability to sol
different set of equations inside the immersed boundary. For instance, equations of
conduction could be solved inside the body if the objective were to study conjugate |
transfer.

Itis worth pointing out here that our methodology differs significantly from the immers
interface method of Leveque and Li [18]. First, the interpolation scheme used in our met
is different from that used by Leveque and Li. Second, their solver is based on a fir
difference method which is altered in the neighborhood of the immersed boundary in o
to ensure global second-order accuracy. In contrast, our method is based on a finite-vc
method, which is designed to give second-order glalnallocal accuracy. Finally, to our
knowledge, the method of Li and Leveque has not been extended to unsteady Navier—S
flows whereas the current method is primarily designed for such flow applications.

Inversion of Discrete Operators

The finite-volume discretization of (3) or (6) in a given cBlican be written as

M
> xpe* =be, (31)
k=1

where they’s denote the coefficients of the nodal values within a stencil of Bizndbp

is the source term that contains the explicit terms as well as the terms involving boun
conditions. The term on the left-hand side represents a discretized Helmholtz operator i
case of the advection-diffusion equation and a Laplacian operator in the case of the pre
Poisson equation. In the present methiddis equal to five for non-boundary cells and this
five-point stencil is shown in Fig. 1. For the trapezoidal boundary cells, the linear-quadt
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QO Points in the six-point stencil

FIG. 6. Six point stencil resulting from discretization on a typical trapezoidal boundary cell.

interpolation described earlier results in a six-point stencil and for the particular bound
cell considered in Fig. 3, the resultant six point stencil is shown in Fig. 6.

The discretized advection-diffusion and pressure Poisson equations result in a cou
system of linear algebraic equations which requires the inversion of a large, sparse, ba
matrix. The structure of this matrix is for the most part similar to that obtained on a Cartes
mesh without any immersed boundaries. However, the presence of the immersed bour
alters this matrix since the coefficients in (31) are different for the trapezoidal bound:
cells. Furthermore, the rows in the matrix corresponding to the trapezoidal boundary c
also have additional elements since the stencil of the trapezoidal boundary cell is diffe
from regular cells. The alternating direction line successive-overrelaxation (SOR) mett
[26] is one of the most widely used iterative methods for solving equations resulting frc
discretization on structured grids. A typical implementation of this technique, which v
have adopted here, involves alternating sweeps along the two families of grid-lines. We
that even in the presence of the immersed boundaries, this method is extremely effe
for the numerical solution of the discretized advection-diffusion equation and the resid
can be reduced to an acceptable level within a few iterations.

The discretized pressure Poisson equation however exhibits slower convergence
the advection-diffusion equation. This is because the time-derivative term in the advect
diffusion equation tends to improve the diagonal dominance of the corresponding discret
operator. Infact due to its slow convergence, the solution of the discretized pressure equi
is usually the most time-consuming part of a fractional-step algorithm. In the presence
immersed boundaries this behavior of the pressure equation can be further exacert
since the stencil for the trapezoidal cells contains dependance on some neighboring
which are not included in the line-SOR sweeps. For example, in Fig. 6 the coupling of ¢
P with cells (1) and (4) in the stencil is not included directly in any of the line-sweep
Furthermore, depending on the aspect ratio of the trapezoidal boundary cell and the anc
which the immersed boundary cuts the cell, diagonal dominance in the pressure operato
be severely weakened. In the various simulations that have been performed using the cL
method, we have found that the simple line-SOR procedure can result in slow converge
of the pressure equation.
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One remedy in such a situation is to resort to a multigrid method [5, 6]. However,
presence of the immersed boundary can complicate the implementation of a multi
procedure since operations such as prolongation and restriction are difficult to pert
near the immersed boundary. In contrast, Krylov subspace methods [15] are an attre
alternative since these are designed for general sparse matrices and therefore do not
any structure in the matrix operator. Thus, the presence of the immersed boundary doe
pose any additional complication for the implementation of these methods. A particul
suitable method in this class is the bi-conjugate gradient stabilized (Bi-CGSTAB) met
[2, 38] which is applicable to non-symmetric matrices and provides relatively unifo
convergence. However, as with all conjugate gradient methods, the convergence rate
Bi-CGSTAB procedure depends critically on the choice of the preconditioner. The Ja
preconditioner which has a trivial construction phase is used routinely in conjunction v
unstructured grids. However, this preconditioner only produces marginal improvemer
the convergence rate of conjugate gradient type algorithms. Other preconditioners su
those based on incomplete factorization can substantially increase the convergence rz
these usually have a non-trivial and expensive construction phase [2].

The structure of the matrix that results from the current Cartesian grid approach how
presents us with another alternative choice of a preconditioner. As pointed out before
presence of the immersed boundary only alters the underlying matrix operator in the |
corresponding to the boundary cells. Although this alteration slows the convergence
of the line-SOR procedure, the convergence rate is still significantly faster than wh:
obtained with a simple point Jacobi method. It follows that the line-SOR procedure wc
serve as a better preconditioner than the Jacobi preconditioner. A further advanta
using the line-SOR as a preconditioner is that this procedure only requires the solutic
tridiagonal systems and this can be accomplished with ease using the Thomas algo
Thus, inthe solver developed here, we have used the line-SOR procedure as a precond
in the Bi-CGSTAB algorithm and find a significant improvement in the convergence r
over a simple line-SOR iterative procedure. In Fig. 7 the convergence rate of the line-¢
and Bi-CGSTAB for solution of the pressure equation on aa@0 uniform Cartesian
mesh has been compared. The flow configuration corresponds to low Reynolds numbe
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FIG.7. Convergence rate of line-SOR and Bi-CGSTAB applied to the pressure equation for a typical prob
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past a circular cylinder and Fig. 7 shows the convergence of the pressure equation a
first time-step where the initial residual is extremely large. One iteration of the Bi-CGSTA
procedure requires two applications of the preconditioner and furthermore in addition to
preconditioning steps, the Bi-CGSTAB procedure also incurs a small but non-negligi
overhead in its other steps. Therefore, in order to make a fair comparison between
two iterative methods, we have estimated the CPU time taken by one line-SOR itera
and designated this as one work unit. The CPU time used in one Bi-CGSTAB iterat
is then estimated in terms of this work unit. In Fig. 7 we have plotted the residual in t
pressure Poisson equation against the work units for the two different iterative schemes.
overrelaxation parameter chosen for this calculation is equal to 1.2 and for the geom
and grid in this particular simulation, this value results in the fastest convergence. We h
also found that this optimum value of the relaxation parameter varies by less than 10%
all the various test cases that we have simulated. The plot clearly shows that Bi-CGST
is about six times faster than the line-SOR procedure. Given this significant converge
acceleration and the fact that BI-CGSTAB can be implemented with relative ease, we |
this to be an ideal methodology for solving the pressure Poisson equation in the cur
Cartesian grid method.

This completes the description of the current simulation methodology. It should be poin
out that although we have described the methodology only in the context of 2-D geomett
the interpolation procedure developed here is in principle extendable to three-dimensi
The key aspects to be addressed in extending this methodology to 3-D are efficient m
ods for representing curved 3-D interfaces and reconstructing boundary cells and fur
refinement of the solution procedure for the pressure equation. In the following sections
will focus on validating this methodology by simulating some canonical flows and demc
strating the capabilities of the method for simulating flows with complex immersed so
boundaries.

3. RESULTS AND DISCUSSIONS

(i) Wannier Flow

The most straightforward way of verifying the second-order spatial accuracy of t
present method is to compute a flow which has a curved immersed boundary and one
which an analytical solution exists. The flow chosen here corresponds to two-dimensic
Stokes flow past a circular cylinder placed next to a moving wall. The exact solution to t
flow was given by Wannier [39] and is reproduced in Appendix 2. Here we have simulal
this flow using our solver on four different uniform meshes. The meshes have equal spa
in thex andy directions and havil, andNy points in these two directions, respectively. In
order to simulate Stokes flow, the convection terms have been turned off in our simulat
Computations have been carried out in the domain shown in Fig. 8 with the exact solu
imposed on boundaries. Both the &nd L, norm of the global error have been computed
as

Ne N,

1 Nx Ny 1/2
numerical __ exac numerical exacl
and =
Z ] i €2 (Nx N, ; (¢} —9; )

(32)
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Moving wall

FIG. 8. Computational domain for Wannier flow simulation and the computed streamline pattern.

and in Fig. 9 we show a log—log plot of the errors in both velocity componeatsd v
versusNy. Also shown is a line with a slope 6f2 which corresponds to second-orde
accurate convergence. The plot clearly shows that the global error in our computed sol
decreases in a manner consistent with a second-order accurate scheme. This test the
proves that the current approach of treating the fluxes in the boundary cells does in
result in a solver which is globally second-order accurate.

(ii) Flow Past a Circular Cylinder Immersed in a Freestream

The exact solution of the Wannier flow allows us to confirm the accuracy of the sol
in the Stokes flow regime. Here we validate the solver in the finite Reynolds num
regime by simulating steady and unsteady flow past a circular cylinder immersed ir
unbounded, uniform flow over a wide range of Reynolds humbers where the Reyn
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FIG.9. Globalerrorinuandv versus number of mesh points for Wannier flow. Solid and dashed lines indic:
L; and L, norm of the error, respectively.
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FIG. 10. Non-uniform mesh used for low Reynolds number simulation of flow past a circular cylinder. On
every other grid line is shown in both directions.

number is defined as Re-U,d/v with d the cylinder diameter and,, the freestream
velocity. This flow had been studied quite extensively in the past and a number of numer
and experimental datasets exist for this flow which are useful for the purpose of validati
Simulations have been performed atRe20, 40, 80, and 300 and results compared with
established experimental and numerical results. All these simulations have been perfor
in a large 3d x 30d domain so as to minimize the effect of the outer boundary on th
development of the wake and Fig. 10 shows the 33%6 non-uniform mesh used in the
low Reynolds number simulations. At the inlet and top and bottom boundaries we spe
velocity corresponding to potential flow past a cylinder and a homogeneous Neum
boundary condition is applied at the exit boundary. We have also tested larger domain s
in order to ensure that the results presented here are independent of the domain size. F
these simulations we first impose a small asymmetric disturbance at the inflow bounc
for a short period of time and then allow the flow to evolve naturally after this. FeeR20
and 40 the wake eventually attains a steady symmetric state and this is consistent witl
well established result that the cylinder wake is stable to perturbations belpw R+ 1
[16,27,41]. Once the flow has reached a steady state we compute the drag coefficient de
by Cp = drag force/(1/2)pUZ2 d and the length of the recirculation zone and compare thes
with established results.

The streamline plots in Figs. 11a and 11b show the mean recirculation regions bet
the circular cylinder at Re=20 and 40, respectively. In this steady flow regime, result
using the current method are compared in Table | to the numerical simulation by Der
and Chang [9] as well as experimental measurements of Tritton [34]. It is found that «
results compare well with the other numerical simulations and experiments.
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(a) 8.51
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(b) 8.5
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FIG. 11. Streamline plot of flow past a circular cylinder. (a)JRe20, (b) Rg = 40.

Itis generally accepted that the wake of a cylinderimmersed in a freestream first becc
unstable to perturbations at a critical Reynolds number of aboyt=Ré&+ 1 [16, 27].
Above this Reynolds number, a small asymmetric perturbation in the near wake will g
in time and lead to an unsteady wake and Karman vortex shedding. This is indeed wh:e
find for our simulation at Re= 80 which has been carried out on a 24183 non-uniform
mesh. Figure 12 shows the variation of the lift and drag coefficient with time and it shows |
vortex shedding develops to a periodic state in time. The computed mean drag coeffi
from the current simulation is about 1.37 which lies between the two experiments [34,
The vortex shedding Strouhal number definedsas fd/U,, where f is the shedding
frequency, is one of the key quantities that characterizes the vortex shedding process.
we have estimated the Strouhal number from the periodic variation of the lift coeffici
and the value comes out to be 0.15 which compares very well with the value obtained 1

TABLE |
Comparison of Mean Drag Coefficient, Length of Wake Bubbld.,, (Measured from Rear End
of Cylinder), and Strouhal Number with Established Results

Reynolds number> 20 40 80 300
Mesh— 152x 156 152x 156 217x 183 217x 183
Study| Co Lw/d Co Lyw/d Co St G St
Tritton [34] 2.22 — 1.48 — 1.29 — — —
Weiselsberger [40] 2.05 — 1.70 — 1.45 — 1.22 —
Dennis and Chang [9] 2.05 0.94 1.52 2.35 — — —
Fornberg [11] 2.00 0.91 1.50 2.24 — — — —
Mittal and Balachandar [21] — — — — — — 1.37 0.21
Williamson [41] — — — — — 0.15 — 0.20

Current 2.03 0.92 1.52 2.27 1.37 0.15 1.38 0.21
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FIG. 12. Variation of lift and drag coefficients with time for Re- 80.

experiments [41]. Figure 13 shows a plot of the streamline pattern and spanwise vorti
contour at one time instant and both plots show the classical Karman vortex street.

In addition to the low Reynolds number simulations, we have also carried out a simulat
at a moderately high Reynolds number of 300. This simulation serves to demonstrate
the current methodology is capable of resolving thin boundary layers that develop in flc
at these Reynolds numbers. The mesh used for this simulation is the same as the one

(b)

y/d

4 6 8 10 12 14 16

FIG. 13. Instantaneous streamline plot and vorticity contour plot in the near wake of the circular cylinder f
Re; =80, (a) streamline plot, (b) vorticity contours.
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tU_/d

FIG. 14. Variation of lift and drag coefficients with time for Re-= 300.

for Rey =80. This is a relatively coarse mesh and this coarse resolution severely 1
the discretization scheme used in our solver for the boundary cells. Figure 14 show:
variation of lift and drag coefficient obtained from our simulation. The mean drag ¢
Strouhal numbers have been computed from these time varying quantities and are inc
in Table I. It can be seen that these agree very well with the 2-D spectral simulation of M
and Balachandar [21] and the Strouhal number also matches well with the experinr
of Williamson [41]. It should be pointed out that at this Reynolds number the cylinc
wake is intrinsically three-dimensional whereas our simulation is two-dimensional :
therefore does not allow spanwise variations. As shown by Mittal and Balachandar [19]
consequence of performing a 2-D simulation in this regime is that the drag is typically o
predicted. This is indeed what we observe for the current simulation. Thus, even thc
our mean drag matches with the other 2-D simulation, it is about 12% higher than
experimentally determined value of Weiselsberger [40].

In Fig. 15 we have shown contour plots of spanwise vorticity at one time-insts
Figure 15a shows a view of of the wake that extends to aboditdb@vnstream from the
cylinder and as expected, this plot shows the formation and evolution of compact Kar
vortices in the wake. Figure 15b is a closeup view of the flow around the cylinder and
mesh superposed on the greyscale contour plot clearly shows that there are fewer tha
points in the attached boundary layer. It can be seen that even with relatively low resolt
provided here, the boundary layers on the cylinder surface are smooth indicating tha
current treatment of the boundary cells adequately resolves thin boundary layers. Itis u
to point out that for the Re= 300 simulation the average CPU time required to comple
one time step is ab®8 s on a DEGAIpha workstation equipped with a 533 MHz processo
and one shedding cycle requires about 675 CPU seconds.

(iii) Flow past A Circular Cylinder in a Channel

In addition to the case of flow past a cylinder immersed in a freestream, we have
validated our method by computing flow past a cylinder of dianeegaced symmetrically
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FIG.15. Spanwise vorticity contour plots in the wake of the circular cylinder forR800. (a) View extending
to 9d downstream of cylinder. (b) Closeup view showing the resolution provided to the attached boundary lay
and separated shear layers.

in a planar channel of heigh A 195x 73 grid is used for these simulations and Fig. 1€
shows a schematic of the flow configuration that has been simulated here. A parak
profile is specified at the channel inlet and the two main parameters in this flow are
blockage ratigd =d/h and the Reynolds number defined as=R@/v whereQ denotes

the inlet volume flux. A systematic numerical study of this flow configuration over a ran
of parameters has been conducted by Cétesil. [7] and results from this study are used
to validate our simulations. This flow shares some features with the case of a cylin
immersed in a freestream. In particular, vortex shedding is also observed in this flow bey
a critical Reynolds numbers. However, the critical Reynolds number is a strong funct
of the blockage ratio. Furthermore, the development of the vortices is also significar

I: : 10.5h »!
3h — wall B

L
parabolic b, .
D profile I h exit E
|

wall

FIG. 16. Flow configuration for simulation of flow past a cylinder placed symmetrically in a planar channel
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affected by the boundary layers that develop on the channel walls. Thus, overall this
more complicated flow and a good test case for our simulation methodology.

In our simulations we have focussed on predicting the critical Reynolds number ft
blockage ratio of 0.2. The bifurcation analysis of Chatral. [7] indicates that for this
particular blockage ratio the critical Reynolds number is 231. We have performed a s
of simulations ranging from a Reynolds number of 225 to 240 in order to pinpoint 1
critical Reynolds number. In each of these simulations, we provide a small asymme
perturbation to the inlet flow for a short time period and subsequently allow the flow
develop naturally to a stationary state. In Fig. 17 we have plotted the temporal variatio
the vertical velocity at one point in the near wake of the cylinder which directly indicat
the growth or decay of the disturbance in the wake. Figure 17 shows that the perturb:
reduces for Reynolds numbers up to 230 whereas it grows for Reynolds numbers gr
than 232. Spanwise vorticity contours at a time instant correspondtr@y/tb? = 100 have
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FIG. 17. Temporal variation of vertical velocity at one point in the wake of the cylinder.
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Re=225

Re=229

Re=230

Re=240

FIG. 18. Spanwise vorticity contours for flow past a cylinder in channel for various Reynolds numbers
tQ/h?=100.

been plotted in Fig. 18 for all these five Reynolds numbers and we observe thatfit e
229, and 230 the wake has for the most part recovered its symmetric state. Substantia
in symmetry can however be observed in the downstream region of the wake-8232e
and this is accompanied by a weak flapping of the downstream end of the two attac
shear layers and weak vortices are observed forming in the downstream wake. Finally,
Reynolds number of 240, we observe vigorous vortex shedding in the wake of the cylin
The critical Reynolds number predicted by our calculation is therefore between 230 and
which is in very good agreement with Chenal [7]. Furthermore, the Strouhal number
defined asf dh/Q wheref is the shedding frequency can be computed from the tempor
variation of the vertical velocity and for Re240 we obtain a Strouhal number of 0.17
which is identical to that obtained in the simulations of Cheal. [7]. Thus all results from
the current set of simulations match very well with the results of Ghieh [7] which have
been obtained using a body-fitted grid.

(iv) Application to Complex Geometries

We have verified the accuracy and fidelity of the solver for some relatively simple canc
ical flows. The main objective of the current work however is to develop an accurate ¢
efficient numerical method that will allow us to simulate flows with extremely complicate
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internal boundaries on simple Cartesian grids. We now demonstrate this capability o
solver by presenting results of two numerical simulations which involve flows with higt
complex immersed boundaries.

(8) Flow past a random array of cylinders.The first complex configuration that we
have simulated is that of flow past a random array of 95 cylinders. The random arre
created in two steps; first we create a regular staggered array of 95 cylinders. Follo
this, the cylinders are moved in a randomly chosen direction by a fixed distanc2dof (
whered is the cylinder diameter. This procedure allows us to obtain a randomized al
while maintaining some control over the minimum distance between two cylinders
uniform inflow velocity is prescribed at the left boundary and a homogeneous Neum
exit boundary condition is applied at the right boundary. Furthermore, periodic conditi
are used on the top and bottom boundaries. This configuration which is of relevanc
porous media and heat exchanger applications represents a geometry which is extre
complex and one which would pose a serious challenge for a structured or unstructurec
generation routine. Here we have simulated this flow using a22Z80 uniform Cartesian
mesh. The Reynolds number based on the inlet flow velocity and cylinder diameter is a
24. This Reynolds number is low enough that the flow eventually attains a steady s
However, at this Reynolds number we do expect to see complex recirculation zones be
the cylinders.

Figures 19a and 19b show the steady state pressure variation and streamlines, re
tively. In Fig. 19a dark and light contours indicate high and low pressure, respectively.
expected, there is a significant drop in the pressure as the flow passes through the
and computed results indicate that on averggex: — pin)/(1/2)pU2 ~ —66. The plotting
package TECPLOT has been used to compute the streamlines from the velocity fielc
in addition to the equispaced streamlined introduced at the inlet, we have also introd
additional streamlines in the cylinder wakes in order to clearly show the recirculation zo
The streamlines exhibit extremely tortuous paths and this is typical of flows in randomi
arrays [13]. We find that the current method has no difficulty in resolving the complex fl
pattern and recirculation regions formed behind the cylinders.

(b) Flow past a cascade of airfoils.The second flow configuration we have chosen t
simulate is of relevance to turbomachinery applications. It consists of flow past a peri
array of airfoils configured in a way similar to that found in a typical turbine or compresso
should however be pointed out that all the airfoils here are stationary. Similar to the ran
array simulation, an inflow velocity is provided at the left boundary and a homogene
Neumann exit boundary condition is applied at the right boundary. Furthermore, peri
conditions are used on the top and bottom boundaries. It is worth mentioning that this
particularly severe test of the current methodology since the airfoil is only about four g
spacings wide near the trailing edge and therefore the boundary cell discretization scl
has to contend with large curvatures. The Reynolds number based on the axial chord ¢
airfoil is 200 and a 40& 250 uniform mesh is used for this simulation. The flow at thi
Reynolds number is inherently unsteady and Fig. 20a shows the streamline pattern ¢
time instant. It can be observed that a number of recirculation zones are in various s
of formation. Figure 20b shows the corresponding spanwise vorticity pattern and this
gives a hint of complex vortex—vortex as well as vortex—body interactions that occur in
flow. Despite the relatively coarse resolution of the trailing edge geometry we find that
solver has no difficulty in obtaining the solution for this flow.
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(a)

(b)

FIG.19. Flow pastarandom array of 95 cylinders. (a) Pressure contours. Light and dark shades indicate
and low pressure, respectively. (b) Corresponding streamline pattern.
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FIG. 20. Flow past a cascade of airfoils at one time instant. (a) Instantaneous streamlines, (b) correspo
spanwise vorticity contours.

4. CONCLUSIONS

A finite-volume based Cartesian grid method has been developed which allows L
simulate unsteady, viscous incompressible flows with complex immersed boundaries.
underlying method is based on a colocated arrangement of variables and a second:
central difference scheme is used for spatial differencing. Furthermore, the solutio
advanced in time using a two-step fractional-step scheme. A new interpolation framev
has been devised which allows us to systematically develop a spatial discretization fo
cells cut by the immersed boundary that preserves the second-order spatial accurac
conservation property of the underlying solver. This is especially crucial for the curr
solver since we plan to use it for simulating flows at moderately high Reynolds number:
such flows, relatively thin boundary layers are expected to form on the immersed bound
and these have to be resolved adequately in order to obtain an accurate representatior
flow. We have found that the presence of immersed boundaries alters the conditionir
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the linear operators and slows down the iterative solution of the pressure Poisson equa
In the current solver, the convergence is accelerated by using a preconditioned conju
gradient method where the preconditioner takes advantage of the structured nature c
underlying mesh.

The second-order global accuracy of the solver has been confirmed by simulating St
flow past a circular cylinder placed near a moving wall and comparing with the exa
solution provided by Wannier [39]. Simulations of flow past a circular cylinder immerse
in a uniform freestream have also been carried out in the Reynolds number range f
20 to 300. Key quantities such as mean drag coefficient, length of recirculation zone,
vortex shedding Strouhal number obtained from our simulations agree well with establis
experimental and numerical results. We have also simulated flow past a circular cylin
placed in a channel and we find that the solver is able to predict the critical Reynolds nun
of vortex shedding with a high degree of precision.

The main advantage of the current approach is that flows with extremely complex inter
boundaries can be simulated with relative ease on simple Cartesian meshes. In ord
demonstrate this capability of the solver, we have simulated two relatively complex flo
The first involves flow through a large array of randomly placed cylinders at finite Reynol
number and the second, flow through a cascade of airfoils at a relatively high Reync
numbers. These flow configurations have been chosen since they would require gener
of extremely complicated meshes if conventional structured/unstructured methods wel
be used. The current Cartesian grid solver is able to simulate these flows with ease the
demonstrating the advantage of the current approach for such complex flows.

APPENDIX 1

Accuracy of Linear-Quadratic Interpolating Function

In this section, we numerically demonstrate that the linear-quadratic interpolation pro
dure results in second-order accurate approximation of fluxes on the face of the boun
cell. Consider the trapezoid shown in Fig. 21 the size and shape of which is defined by
parametersg\, &, and¢. Comparison of this figure with Fig. 3b shows that this is a typica
situation encountered while computing the flux on the face of a boundary cell. The six poi
marked on the trapezoid in Fig. 21 can be identified as the cell-enter locations in Fig.
The objective here is to demonstrate that given the value of a vargadtithese six points,
the value ofp andd¢/dx at a point (designated lyyin Fig. 21) on the line midway between
the parallel sides of the trapezoid can be obtained to second-order accuracy using a i
guadratic interpolation function of the form shown in (16). We first assume a particu
functional representation gfin the two-dimensional Cartesian space and the valugsbf
the six marked locations are computed from this functional representation. For our study
have chosen (X, y) = sin(x) coqy). The greyscale contours in Fig. 21 show the variatior
of this function and it can be seen that the function has noticeable gradients in the vici
of point p. The six values o are now used in conjunction with our linear-quadratic inter-
polant to obtainp, and(d¢/dx),. The error in these numerically obtained values is the
computed by comparing with the exact values which can be obtained directly from the gi
functional form ofg. Thus the error in the value gfis given bys = |¢, — sin(xp) cogy,)|
and for the derivative itis given = [(d¢/3X)p, — cOoSXp) COKYp)|. The size of the trape-
zoid is now changed and the above procedure repeated for trapezoids of various size
the current procedure, we keé@mnd¢ constant and only change. Thus, all trapezoids
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5.2 5.6 6 6.4

FIG. 21. Schematic showing the geometry of trapezoid used in our analysis of local accuracy. The grey:
contours show the variation in the assumed functional forg. of

are similar in shape and their sizes are defined by the linear dimeasieimally, the error
can be plotted as a function of and this allows us to deduce the order of accuracy of o
approximation.

In Fig. 22 is shown a log—log plot of the errorgp and(d¢ /9X) , againstA. Also shown
is a line with slope of two which indicates second-order accuracy. Four different value

10™

i —_—

I ——a— 3¢/0X

FIG.22. Variation of local error in the estimation of variable values and derivatives on the face of a trapezo
boundary cell with the size of the trapezoid.
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A have been used and the plot clearly shows that the error decreases imih manner
consistent with a second-order accurate scheme. Furthermore, we have also confirmed
similar reduction in error is obtained at any point on the line AB. This proves that the line:
quadratic interpolation procedure results in second-order accurate estimation of face-c
values and derivatives.

APPENDIX 2

Wannier Flow

Wannier [39] obtained the exact solution for Stokes flow past a spinning cylinder loca
in the vicinity of an infinite wall moving in the horizontal direction. The flow is bounded b
the wall on one side and extends to infinity in the other directions. In our validation stu
we have considered the case where the cylinder is not spinning and the exact solutiol
this situation is given by

= _M[(S-I- y) + g(S—y)} —D-— Fln<g>
o B B
2 Y Y
+ B [(s+2y) - L(SJF ) ] — E [(s— 2y) + L(S y) ] (33)
o o ‘3 ’3
af o B

whereu andv are the horizontal and vertical velocities respectively and the various para
eters are defined as

__Uh g_2a&h+su (35)
In(y) In(y)
_2Ah=9U o 5y g2 Y (36)
In(y) In(y)
a=xX2+(s+y>2 B=x2+(s—y)? (37)
22 2 _h+s
s =h?—r?, = e (38)

In the above expressiond, is the velocity of the wally the radius of the cylinder, and
h the distance of the wall from the center of the cylinder.
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