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A Cartesian grid method has been developed for simulating two-dimensional un-
steady, viscous, incompressible flows with complex immersed boundaries. A finite-
volume method based on a second-order accurate central-difference scheme is used
in conjunction with a two-step fractional-step procedure. The key aspects that need
to be considered in developing such a solver are imposition of boundary conditions
on the immersed boundaries and accurate discretization of the governing equation
in cells that are cut by these boundaries. A new interpolation procedure is presented
which allows systematic development of a spatial discretization scheme that pre-
serves the second-order spatial accuracy of the underlying solver. The presence of
immersed boundaries alters the conditioning of the linear operators and this can slow
down the iterative solution of these equations. The convergence is accelerated by
using a preconditioned conjugate gradient method where the preconditioner takes
advantage of the structured nature of the underlying mesh. The accuracy and fidelity
of the solver is validated by simulating a number of canonical flows and the abil-
ity of the solver to simulate flows with very complicated immersed boundaries is
demonstrated. c© 1999 Academic Press

Key Words:viscous incompressible flow; finite volume method; Cartesian grid
method; immersed boundaries.

1. INTRODUCTION

The conventional structured-grid approach to simulating flows with complex immersed
boundaries is to discretize the governing equations on a curvilinear grid that conforms to the
boundaries. The main advantages of this approach are that imposition of boundary condi-
tions is greatly simplified, and furthermore, the solver can be easily designed so as to main-
tain adequate accuracy and conservation property. However, depending on the geometrical
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complexity of the immersed boundaries, grid generation and grid quality can be major is-
sues and usually, one has to resort to a multi-block approach in order to handle anything
but the simplest geometries. Furthermore, transformation of the governing equations to the
curvilinear coordinate system results in a complex system of equations and this complexity
can adversely impact the stability, convergence and operation count of the solver.

A different approach which is gaining popularity in recent years is the so-called Carte-
sian grid method where the governing equations are discretized on a Cartesian grid which
does not conform to the immersed boundaries. This greatly simplifies grid generation and
also retains the relative simplicity of the governing equations in Cartesian coordinates. In
addition, this method also has a significant advantage over the conventional body-fitted
approach in simulating flows with moving boundaries, complicated shapes, or topological
changes [31]. Since the underlying Cartesian grid does not depend on the location of the
immersed boundary, there is no need for remeshing strategies. In fact, a moving boundary
algorithm has been implemented in conjunction with a Cartesian grid algorithm that has
been used successfully for diffusion-dominated solidification problems [37] which involve
complex time evolving moving boundaries.

The obvious complication in using Cartesian grid methods is in the imposition of bound-
ary conditions at the immersed boundaries. In particular, since the immersed boundary
can cut through the underlying Cartesian mesh in an arbitrary manner, the main challenge
is to construct a boundary treatment which does not adversely impact the accuracy and
conservation property of the underlying numerical solver. This is especially critical for vis-
cous flows where inadequate resolution of boundary layers which form on the immersed
boundaries can reduce the fidelity of the numerical solution. Consequently, Cartesian grid
methods have been used extensively for Euler flows [1, 3, 4, 10, 24, 28] whereas appli-
cations to viscous flows are relatively scarce [17, 31, 35, 36]. It should be pointed out
that there is another related class of methods, the so-called “immersed boundary” meth-
ods in which the immersed boundary is represented by a discrete set of body or surface
forces. These methods have also been used successfully for viscous flow computations [14,
25, 42]; however, one disadvantage of these methods is that in most cases the immersed
boundary is smeared across a few cell-widths. This is mainly due to problems associated
with representing a point force on a finite size mesh. As shown by Udaykumaret al. [37]
this smearing can adversely impact the dynamics of flows where the boundary motion is
closely coupled with the evolution of surrounding fluid field. Similarly, in the so-called
volume-of-fluid (VOF) method [30] too, the process of interface reconstruction leads to a
non-smooth interface. In contrast to these approaches, in Cartesian grid methods the bound-
ary is represented as a sharp interface and this has advantages for high Reynolds number
flows as well as flows with strong two-way coupling between the flow and the boundary
motion.

Here we have developed a Cartesian grid method which is well suited for simulating
unsteady, viscous, incompressible flows. The current solver shares some features with
the solver of Udaykumaret al. [35] particularly in terms of the description and identi-
fication of the immersed boundary and the use of a finite-volume approach. However, a
number of key advances have been made in terms of the capability of the solver. These
include: (1) A fractional-step scheme [8] which results in a fast solution of unsteady flows,
(2) adoption of a new compact interpolation scheme near the immersed boundaries that
allows us to retain second-order accuracy and conservation property of the solver, and
(3) use of a preconditioned conjugate gradient method for solving the pressure Poisson
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equation which takes advantage of the underlying structured nature of the mesh and which
substantially accelerates the convergence of the pressure Poisson equation.

The current paper will focus on describing these and other salient features of the numerical
methodology, validating the accuracy and fidelity of the approach and demonstrating the
capabilities of the solver in some complex configurations.

2. NUMERICAL METHODOLOGY

In this section we will first describe the underlying solver for a Cartesian mesh with-
out considering the immersed boundaries. Following this, we will discuss in detail the
modifications that have to be made in the solver to account for immersed boundaries.

Fractional-Step Method

The governing equation is the unsteady, viscous, incompressible Navier–Stokes equation
written in terms of the primitive variables. This equation is discretized on a Cartesian mesh
using a cell-centered colocated (non-staggered) arrangement [12] of the primitive variables
(u, p). The integral form of the non-dimensionalized governing equations is given by

mass conservation
∫
cs

u · n̂ dS= 0 (1)

momentum
conservation

∂

∂t

∫
cv

u dV +
∫
cs

u(u · n̂) dS= −
∫
cs

pn̂ dS+ 1

Re

∫
cs

∇u · n̂ dS. (2)

This is used as the starting point for deriving a second-order accurate finite-volume method.
In the above equationscvandcsdenote the control-volume and control-surface, respectively,
andn̂ is a unit vector normal to the control-surface. The above equations are to be solved
with u(x, t)= v(x, t) on the boundary of the flow domain wherev is the prescribed boundary
velocity. A second-order accurate, two-step fractional step method [8, 20, 43] is used for
advancing the solution in time. In this time-stepping scheme, the solution is advanced
from time level “n” to “ n+ 1” through an intermediate advection-diffusion step where
the momentum equations without the pressure gradient terms are first advanced in time.
A second-order Adams–Bashforth scheme is employed for the convective terms and the
diffusion terms are discretized using an implicit Crank–Nicolson scheme. This eliminates
the viscous stability constraint which can be quite severe in simulation of viscous flows.

At this stage, in addition to the cell-center velocities which are denoted byu, we also
introduce face-center velocitiesU. In a manner similar to a fully staggered arrangement,
only the component normal to the cell-face is computed and stored (see Fig. 1). The face-
center velocity is used for computing the volume flux from each cell in our finite-volume
discretization scheme. The advantage of separately computing the face-center velocities
will be addressed later in this section. The semi-discrete form of the advection-diffusion
equation for each cell shown in Fig. 1 can therefore be written as∫
cv

u∗ − un

1t
dV = −1

2

∫
cs

[3un(Un · n̂)−un−1(Un−1 · n̂)] dS+ 1

2 Re

∫
cs

(∇u∗ +∇un) · n̂ dS,

(3)



212 YE ET AL.

FIG. 1. Schematic showing the underlying Cartesian mesh and arrangement of cell-center and face-center
velocities.

whereu∗ is the intermediate cell-center velocity andcvandcsdenote the volume and surface
of a cell, respectively. The velocity boundary condition imposed at this intermediate step
corresponds to that at the end of the full time-step, i.e.,u∗ = vn+1. Following the advection-
diffusion step, the intermediate face-center velocityU∗ is computed by interpolating the
intermediate cell-center velocity.

The advection-diffusion step is followed by the pressure-correction step∫
cv

un+1− u∗

1t
dV = −

∫
cv

∇ pn+1 dV, (4)

where we require that the final velocity field satisfy the integral mass conservation equation
given by ∫

cs

(Un+1 · n̂) dS= 0. (5)

This results in the following equation for pressure∫
cs

(∇ pn+1) · n̂ dS= 1

1t

∫
cs

(U∗ · n̂) dS (6)

which is the integral version of the pressure Poisson equation. Note that the pressure-
correction step is represented by the inviscid equation (4) and is well posed only if the
velocity component normal to the boundary is specified. Therefore the velocity boundary
condition consistent with (4) isun+1 · N̂= vn+1 · N̂ whereN̂ is the unit normal to the bound-
ary of the flow domain. It can be easily shown that this implies that(∇ pn+1) · N̂= 0 be
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used as the boundary condition for Eq. (6). Once the pressure is obtained by solving this
equation, both the cell-center (cc) and face-center (fc) velocities are updated separately as

un+1 = u∗ −1t (∇ pn+1)cc; Un+1 = U∗ −1t (∇ pn+1)fc. (7)

It should be pointed out that the pressure gradient computed at the face-center is not simply
an interpolated version of the pressure gradient at the cell-center. For instance with reference
to Fig. 1 thex-direction pressure gradient at the cell center is computed as

(∂p/∂x)P = (pE − pW)/21x (8)

whereas the same gradient on the east face is given by

(∂p/∂x)e = (pE − pP)/1x. (9)

It follows thatUn+1 is not simply an interpolated version of the face-center velocitiesun+1.
In fact the pressure equation (6) is discretized in terms of the pressure gradients on the
cell faces and with the separate update of the face-center velocity as shown in (7), exact
satisfaction of (5) is guaranteed.

There are many advantages to introducing the face-center velocities into the fractional-
step scheme. In conventional colocated methods, the solution of the pressure Poisson equa-
tion and satisfaction of the continuity constraint can be quite problematic. As shown clearly
in Ferziger and Peric [12] for colocated methods, if a compact stencil is used for pres-
sure then the pressure does not suffer from grid-to-grid oscillation but the final velocity
does not satisfy the divergence free constraint exactly. On the other hand, if a consistent
non-compact stencil is used for pressure then the divergence constraint can be satisfied to
machine precision. However, in this case the pressure is subject to grid-to-grid oscillations.
A similar observation has been made in the context of the finite element method by Nonino
and Comini [22]. One remedy is to use a fully staggered arrangement of the variables
[23]. However, this can increase the complexity of the solver since each of the momentum
and pressure equations have to be discretized at different locations. This is more so in our
Cartesian grid method since the discretization of the cells near the boundary can become
extremely complicated with a fully staggered arrangement. Other remedies have also been
proposed for tackling these problems that arise in a colocated arrangement [29, 32, 33] but
these have been employed mainly in steady flow computations.

Zanget al. [43] have introduced a new colocated approach for solution of incompressible
flows which seems especially suitable for unsteady flows. In their approach, the Cartesian
velocity components are colocated with pressure at the cell-center and the momentum
equation solved only at the cell-center. However, the intermediate cell-center velocity is
used to compute the volume fluxes on the cell faces and subsequently, the pressure correction
is applied separately to the cell-center velocities and the volume fluxes. In an analogous
manner, we define a face-center velocity which when multiplied by the face area gives us
the volume flux and this face-center velocity is updated separately in the pressure correction
step. This procedure ensures that even with a compact stencil, the integral constraint (6) is
satisfied to machine precision at the end of the full time step. The problems of grid-to-grid
pressure oscillations and mass conservation error are therefore eliminated simultaneously.
Furthermore, this updated face-center velocity is used to compute the convective flux at the
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next time step as shown in (3). Since the volume flux is conserved exactly, this ensures that a
uniform velocity field will convect on the grid without generating spurious gradients. Zang
et al. [43] have used this procedure in conjunction with a curvilinear mesh solver for large-
eddy simulation of turbulent flows and have found that the solver performs satisfactorily
for high Reynolds number flows.

This approach therefore has some of the most desirable features of a fully staggered
arrangement. The main advantage of this approach over the fully staggered approach is
that the momentum and pressure equations are all solved at the same location. However, as
apparent from (8), unlike a fully staggered arrangement, in the current approach the cell-
center velocity is not coupled strongly to the pressure gradient over the cell. Furthermore in a
fully staggered arrangement, the computed velocity components satisfy both the momentum
as well as continuity equations. In contrast, in the the current approach the velocity field
is represented by two different but closely related variables, the cell-center velocity which
satisfies the momentum equations and the face-center velocity which satisfies the continuity
constraint.

Inclusion of Immersed Boundaries

The underlying approach for a Cartesian grid without immersed boundaries has been
outlined in the previous subsection. We will now describe how this approach is imple-
mented in a situation where some of the Cartesian cells are cut by immersed boundaries
as shown in Figs. 2a and 2b. For the purpose of this discussion we assume that the im-
mersed boundary demarcates a fluid–solid boundary. However, in general, this method is
also applicable to flows with fluid–fluid boundaries. Furthermore, this paper focuses only

FIG. 2. Schematic of computational domain with immersed boundaries. (a) Boundary cells with immersed
boundary located south of cell center. (b) Boundary cells with immersed boundary located west of cell center.
(c) Typical reshaped trapezoidal boundary cells corresponding to case (a). (d) Typical boundary cells corresponding
to case (b). Shaded arrows indicate fluxes that need special treatment.
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on two-dimensional applications. However, the overall methodology to be described here
is in principle extendable to three-dimensions.

The immersed boundary is first represented by a series of piecewise linear segments.
Based on this representation of the immersed boundary, we identify cells in the underlying
Cartesian mesh that are cut by the boundary and determine the intersection of the immersed
boundary with the sides of these cut cells. Next, cells cut by the immersed boundary whose
cell-center lie in the fluid are reshaped by discarding the part of these cells that lies in the
solid. Pieces of cut cells whose center lie in the solid are absorbed by neighboring cells.
This results in the formation of control-volumes which are trapezoidal in shape as shown
in Figs. 2c and 2d. Details of this reshaping procedure can be found in Udaykumaret al.
[36, 37].

Depending on the location and local orientation of the immersed boundary, trapezoidal
cells of a wide variety of dimensions can be formed. The key issue here is to evaluate
mass, convective and diffusive fluxes, and pressure gradients on the cell-faces of these
trapezoidal cells from the neighboring cell-center values with adequate accuracy such that
global second-order accuracy of the solver will be preserved. Furthermore, the current
Cartesian grid method has been developed for unsteady viscous flows at moderately high
Reynolds numbers. In such flows we expect that relatively thin boundary layers will be
generated in the vicinity of the immersed boundary. These boundary layers are not only
regions of high gradients but quite often, they are also the most important features of the flow
field. Thus, accurate discretization of the equations is especially important in the boundary
layers. Since all the trapezoidal cells are expected to lie within these boundary layer, this is
another reason why adequate local accuracy is desirable for these cells.

For a uniform Cartesian mesh, the fluxes and pressure gradients on the face-centers can be
computed to second-order accuracy by a simple linear approximation between neighboring
cell-centers. This however is not the case for a trapezoidal boundary cell since the center
of some of the faces of such a cell (marked by a shaded arrow in Figs. 2c and 2d) may
not lie in a location which puts it in the middle of neighboring cell-centers where a linear
approximation would give second-order accurate estimate of the gradients. Furthermore,
some of the neighboring cell-centers do not even lie on the same side of the immersed
boundary and therefore cannot be used in the differencing procedure. Thus, not only do
we need a procedure for computing these face-center quantities which is accurate, we also
require that the procedure adopted be capable of systematically handling reshaped boundary
cells with a wide range of shapes. Our solution has been to use a compact two-dimensional
polynomial interpolating function which allows us to obtain a second-order accurate ap-
proximation of the fluxes and gradients on the faces of the trapezoidal boundary cells from
available neighboring cell-center values. The current interpolation scheme coupled with
the finite-volume formulation guarantees that the accuracy and conservation property of the
underlying algorithm is retained even in the presence of curved immersed boundaries.

As shown in Eq. (3), a finite-volume discretization of Navier–Stokes equations requires
the estimation of surface integrals on the faces of each cell. The integrand (denoted here by
f ) can either involve the value or the normal derivative of a variable. An example of the
former is the convective flux denoted by (ρφv · n̂) and of the latter, the diffusive flux given
by (0∇φ · n̂) whereφ is a generic scalar variable. In addition to this, the pressure equation
also requires evaluation of the normal pressure gradient. In order to estimate these surface
integrals to second-order accuracy, the midpoint rule can be used and this requires accurate
evaluation of the integrand at the center of the face. For regular cells which are away from
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FIG. 3. Schematic of interpolation for cell face values and derivative at boundary cells. (a) Various fluxes
required for trapezoidal boundary cell (b) trapezoidal region, and stencil used in computingfsw.

the immersed boundary the integrand can be evaluated at the face-center to second-order
accuracy in a straightforward manner by assuming a linear profile between nodes on the
either side of the face. This is not the case for the trapezoidal boundary cells. Consider
the trapezoidal boundary cellABCDE in Fig. 3a. The faceABC of the trapezoidal cell is
composed of two pieces;AB coming from the cellP andBC coming from cellS. The
integral on this face can be decomposed as∫

AC

f dy=
∫
AB

f dy+
∫
BC

f dy. (10)

A second-order approximation to this integral can then be obtained as∫
AC

f dy≈ fw(yA − yB)+ fsw(yB − yC), (11)

where fw and fsw are computed at the center of segmentsAB andBC, respectively. If on the
other hand, the face is cut by the immersed boundary such that it is smaller than a nominal
cell face, as in the case of faceDE then the integral can be approximated as∫

DE

f dy≈ fe(yE − yD), (12)

where fe is the flux computed at the center of the segmentDE . For non-boundary cells,
these face-center values can be evaluated to second-order accuracy quite easily by a linear
approximation and we would therefore like to evaluatefw, fsw, and fe to within second-
order accuracy also. Approximation offw to second-order accuracy is quite straightforward
and is done in the same way as for the face of a non-boundary cell. For instance, iffw requires
the value ofφ, this can be evaluated to second-order accuracy as

φw = φWλW + φP(1− λW), (13)



GRID METHOD FOR INCOMPRESSIBLE FLOWS 217

where the linear interpolation factorλW is defined as

λW = xP − xw

xP − xW
. (14)

Alternatively, if fw requires the normal gradient ofφ as it would for the diffusion or pressure
gradient terms, this can be approximated by a central-difference scheme as(

∂φ

∂x

)
w

= φP − φW

xP − xW
. (15)

This approximation is second-order accurate when the cell face is midway betweenP and
W, i.e., when the mesh is uniform.

Evaluation offsw or fe to second-order accuracy is somewhat more complicated. Expres-
sions such as (13) or (15) cannot be used since in many instances some of the neighboring
nodes lie inside the immersed boundary. For instance, for the situation shown in Fig. 3a, the
south node is inside the immersed boundary and cannot be used in the evaluation offsw.
Even if neighboring nodes are available, as they are for the east face, it is not clear how a
second-order accurate scheme can be constructed sincefe is not located on the line joining
the neighboring cells centers and consequently, expressions such as (13) or (15) cannot
approximate this flux to second-order accuracy. Thus, a different approach is needed here
for evaluating these fluxes.

Our approach is to express the flow variables in terms of a two-dimensional polynomial
interpolating function in an appropriate region and evaluate the fluxes such asfsw or fe

based on this interpolating function. For instance, in order to approximatefsw, we express
φ in the shaded trapezoidal region shown in Fig. 3b in terms of a function that is linear in
x and quadratic iny

φ = c1xy2+ c2y2+ c3xy+ c4y+ c5x + c6, (16)

wherec1 to c6 are six unknown coefficients. Iffsw involves the normal derivative ofφ, this
can be obtained by differentiating the interpolating function, i.e.,

∂φ

∂x
= c1y2+ c3y+ c5. (17)

The rationale for choosing (16) as the interpolating function for evaluatingfsw is as
follows: the objective here is to evaluate (∂φ/∂x) at the center ofBC to within at least second-
order accuracy. Furthermore, we would like to do this with the most compact interpolant so
as to minimize the size of the stencil required for the boundary cell. Clearly, a biquadratic
interpolating function in the trapezoid shown in Fig. 3b would lead to second-order accurate
evaluation of the derivative anywhere inside the trapezoid. However, a biquadratic function
has nine unknown coefficients and therefore requires a large nine-point stencil. It turns out
however that for the trapezoid shown in Fig. 3b, second-order accurate evaluation of the
derivative on the cell face can be achieved by using an interpolating function that is quadratic
in y but only linear inx. This is becauseBC is midway between the two parallel sides of the
trapezoidal and in a manner analogous to central-differencing, linear interpolation in the
x-direction leads to second-order accurate evaluation of the derivative at this location. On
the other hand, this situation does not exist in they-direction for the cell shown in Fig. 3b
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and therefore a quadratic interpolation is necessary in this direction in order to obtain a
second-order accurate approximation to (∂φ/∂x) at the center ofBC. In Appendix 1, we
have demonstrated numerically that the linear-quadratic interpolating function shown in
(16) does indeed result in second-order accurate evaluation of values and derivatives on a
line which is located midway between the two parallel sides of a trapezoid.

It can be seen in Fig. 3b that the sides of the trapezoid in which the interpolation is
performed pass through four nodal points and two boundary points. Thus, the six unknown
coefficients in (16) can be expressed in terms of the values ofφ at these six locations. To
solve forcn, we obtain the following system of equations by expressing theφ at the six
locations in terms of the linear-quadratic interpolating function:

φ1

φ2
...

φ6

 =


x1y2
1 y2

1 x1y1 y1 x1 1

x2y2
2 y2

2 x2y2 y2 x2 1
. . . . . . . . . . . . . . . . . .

x6y2
6 y2

6 x6y6 y6 x6 1




c1

c2
...

c6

 . (18)

The coefficients can now be expressed in terms of values ofφ at the six points by inverting
(18), i.e.,

cn =
6∑

j=1

bnjφ j , n = 1, 2, . . . ,6, (19)

wherebnj are the elements of the inverse of the Vandermonde matrix [15] in (18).
After cn is obtained, the value ofφ at center ofBC is expressed in the form of

φsw= c1xswy2
sw+ c2y2

sw+ c3xswysw+ c4ysw+ c5xsw+ c6 (20)

and using (19) this can be rewritten as

φsw=
6∑

j=1

α jφ j , (21)

where

α j = b1 j xswy2
sw+ b2 j y

2
sw+ b3 j xswysw+ b4 j ysw+ b5 j xsw+ b6 j . (22)

The value of∂φ/∂x at center ofBC is expressed as(
∂φ

∂x

)
sw

= c1y2
sw+ c3ysw+ c5 (23)

and using (19) this can be written as(
∂φ

∂x

)
sw

=
6∑

j=1

β jφ j , (24)

where

β j = b1 j y
2
sw+ b3 j ysw+ b5 j . (25)
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FIG. 4. Trapezoidal region and stencil used in computingfe.

Note thatα areβ are coefficients that depend only on the mesh and the location and orien-
tation of the immersed boundary. Therefore these can be computed once at the beginning
of the solution procedure. Subsequently, relationships such as (21) and (24) can be used in
the spatial discretization of the governing equations (3)–(7).

A similar interpolation procedure is also used for approximatingfe. For this, a linear-
quadratic interpolant is used in the trapezoidal region shown in Fig. 4 and a relationship
similar to (21) and (24) developed for approximatingfe. The six points contained in this
stencil are also shown in the figure. It should be pointed out that the north face of the
particular cell being considered here does not need special treatment since face-center values
and derivatives can be computed to second-order accuracy using a linear approximation.
However, in general there are also boundary cells which have their north or south faces cut
by the immersed boundary (as shown in Fig. 2b). For these boundary cells too, the same
approach is used to evaluate the fluxes on these cut faces. The only difference here is that
the interpolating function is linear iny and quadratic inx.

Now we turn to the calculation of the flux on cell faceCD which lies on the immersed
boundary as shown in Fig. 2a. The integrated flux on this face can again be evaluated to
second-order accuracy using the midpoint rule and as before we would like to evaluate
the integrand at the center of faceCD (denoted here byfint) to second-order accuracy.
In general both convective and diffusive fluxes are needed on this face and this requires
the approximation of variables value as well as the normal derivative at the center ofCD.
The value is usually available from a Dirichlet type boundary condition and hence no
interpolation is required for this. Here we describe the approximation procedure for the
normal derivative. The normal derivative on faceCD can be decomposed as

∂φ

∂n
= ∂φ

∂x
n̂x + ∂φ

∂y
n̂y, (26)

wheren̂x andn̂y are the two components of the unit vector normal to faceCD. Since we
know the shape of the immersed boundary,n̂x andn̂y are known. Therefore computation of
the normal flux requires estimation of∂φ/∂x and∂φ/∂y at the center of the line segment
CD. For the cell being considered here,∂φ/∂y is computed to second-order accuracy with
relative ease by expressing theφ variation along the vertical line in terms of a quadratic in
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FIG. 5. Stencil for calculation of interface fluxfint. (a) Stencil for calculating∂φ/∂y, (b) stencil for calculating
∂φ/∂x.

y as

φ = a1y2+ a2y+ a3. (27)

The coefficients in the quadratic can be expressed in terms of the values ofφ at the three
points indicated in Fig. 5a. Subsequently, the normal derivative at the center of faceCD is
evaluated as (

∂φ

∂y

)
int

= 2a1yint + a2 =
3∑

j=1

τ
y
j φ j , (28)

where againτ y
j are coefficients which depend solely on the geometry of the boundary cell.

Unlike the calculation of∂φ/∂y for this cell, the calculation of∂φ/∂x is not straightfor-
ward. However, an approach consistent with the computation offsw and fe can be used to
estimate the value of this derivative to desired accuracy. Consider the trapezoid shown in
Fig. 5b. Again, because thex-coordinate of the center ofCD is midway between the two
parallel sides of this trapezoid, expressing the variable in this trapezoid in terms of an inter-
polating function which is linear inx and quadratic iny allows us to obtain a second-order
accurate approximation to(∂φ/∂x)sw at the center of the line segmentCD. The procedure
for this follows along lines similar to that shown for(∂φ/∂x)sw and we get the following
expression for thex-derivative on the interface,(

∂φ

∂x

)
int

=
6∑

j=1

τ x
j φ j , (29)

where the coefficientsτ x
j depend on the location and orientation of the immersed boundary

in the neighborhood of the cell under consideration. Finally we get an expression of the
form (

∂φ

∂n

)
int

=
9∑

j=1

τ jφ j (30)
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for the normal gradient whereτ j can be obtained from (26), (28), and (29). Thus we obtain
a nine-point stencil for the flux on the interface and the points in this stencil are shown
in Figs. 5a and 5b. As can be seen from these figures, of these nine points, three points
lie on the immersed boundary and their values are available from the prescribed boundary
condition.

The overall solution procedure is as follows:

1. Determine the intersection of the immersed boundary with the Cartesian mesh.
2. Using this information, reshape the boundary cells.
3. For each reshaped boundary cell, compute and store the coefficients shown in (21),

(24), and (30).
4. Use these coefficients to develop discrete expressions and operators for the various

terms in the discretized Navier–Stokes equations.
5. Advance the discretized equations in time.

It should be pointed out that although most cells are four-sided trapezoidal cells, some five-
sided cells and three-sided triangular cells are also encountered. However, the discretization
of the governing equations for these cells can also be handled within the framework of the
current interpolation scheme. With all of these features, the current solver can in princi-
ple, handle arbitrarily complex geometries. Furthermore, multiple immersed bodies can be
handled as easily as a single body. This is in contrast to the body fitted grid where the grid
topology can get quite complicated in the presence of multiple bodies. Finally, since the
inside of the immersed boundary is also gridded, we also have the capability to solve a
different set of equations inside the immersed boundary. For instance, equations of heat
conduction could be solved inside the body if the objective were to study conjugate heat
transfer.

It is worth pointing out here that our methodology differs significantly from the immersed
interface method of Leveque and Li [18]. First, the interpolation scheme used in our method
is different from that used by Leveque and Li. Second, their solver is based on a finite-
difference method which is altered in the neighborhood of the immersed boundary in order
to ensure global second-order accuracy. In contrast, our method is based on a finite-volume
method, which is designed to give second-order globaland local accuracy. Finally, to our
knowledge, the method of Li and Leveque has not been extended to unsteady Navier–Stokes
flows whereas the current method is primarily designed for such flow applications.

Inversion of Discrete Operators

The finite-volume discretization of (3) or (6) in a given cellP can be written as

M∑
k=1

χk
Pφ

k = bP, (31)

where theχ ’s denote the coefficients of the nodal values within a stencil of sizeM andbP

is the source term that contains the explicit terms as well as the terms involving boundary
conditions. The term on the left-hand side represents a discretized Helmholtz operator in the
case of the advection-diffusion equation and a Laplacian operator in the case of the pressure
Poisson equation. In the present method,M is equal to five for non-boundary cells and this
five-point stencil is shown in Fig. 1. For the trapezoidal boundary cells, the linear-quadratic
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FIG. 6. Six point stencil resulting from discretization on a typical trapezoidal boundary cell.

interpolation described earlier results in a six-point stencil and for the particular boundary
cell considered in Fig. 3, the resultant six point stencil is shown in Fig. 6.

The discretized advection-diffusion and pressure Poisson equations result in a coupled
system of linear algebraic equations which requires the inversion of a large, sparse, banded
matrix. The structure of this matrix is for the most part similar to that obtained on a Cartesian
mesh without any immersed boundaries. However, the presence of the immersed boundary
alters this matrix since the coefficients in (31) are different for the trapezoidal boundary
cells. Furthermore, the rows in the matrix corresponding to the trapezoidal boundary cells
also have additional elements since the stencil of the trapezoidal boundary cell is different
from regular cells. The alternating direction line successive-overrelaxation (SOR) method
[26] is one of the most widely used iterative methods for solving equations resulting from
discretization on structured grids. A typical implementation of this technique, which we
have adopted here, involves alternating sweeps along the two families of grid-lines. We find
that even in the presence of the immersed boundaries, this method is extremely effective
for the numerical solution of the discretized advection-diffusion equation and the residual
can be reduced to an acceptable level within a few iterations.

The discretized pressure Poisson equation however exhibits slower convergence than
the advection-diffusion equation. This is because the time-derivative term in the advection-
diffusion equation tends to improve the diagonal dominance of the corresponding discretized
operator. In fact due to its slow convergence, the solution of the discretized pressure equation
is usually the most time-consuming part of a fractional-step algorithm. In the presence of
immersed boundaries this behavior of the pressure equation can be further exacerbated
since the stencil for the trapezoidal cells contains dependance on some neighboring cells
which are not included in the line-SOR sweeps. For example, in Fig. 6 the coupling of cell
P with cells (1) and (4) in the stencil is not included directly in any of the line-sweeps.
Furthermore, depending on the aspect ratio of the trapezoidal boundary cell and the angle at
which the immersed boundary cuts the cell, diagonal dominance in the pressure operator can
be severely weakened. In the various simulations that have been performed using the current
method, we have found that the simple line-SOR procedure can result in slow convergence
of the pressure equation.
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One remedy in such a situation is to resort to a multigrid method [5, 6]. However, the
presence of the immersed boundary can complicate the implementation of a multigrid
procedure since operations such as prolongation and restriction are difficult to perform
near the immersed boundary. In contrast, Krylov subspace methods [15] are an attractive
alternative since these are designed for general sparse matrices and therefore do not assume
any structure in the matrix operator. Thus, the presence of the immersed boundary does not
pose any additional complication for the implementation of these methods. A particularly
suitable method in this class is the bi-conjugate gradient stabilized (Bi-CGSTAB) method
[2, 38] which is applicable to non-symmetric matrices and provides relatively uniform
convergence. However, as with all conjugate gradient methods, the convergence rate of the
Bi-CGSTAB procedure depends critically on the choice of the preconditioner. The Jacobi
preconditioner which has a trivial construction phase is used routinely in conjunction with
unstructured grids. However, this preconditioner only produces marginal improvement in
the convergence rate of conjugate gradient type algorithms. Other preconditioners such as
those based on incomplete factorization can substantially increase the convergence rate but
these usually have a non-trivial and expensive construction phase [2].

The structure of the matrix that results from the current Cartesian grid approach however
presents us with another alternative choice of a preconditioner. As pointed out before, the
presence of the immersed boundary only alters the underlying matrix operator in the rows
corresponding to the boundary cells. Although this alteration slows the convergence rate
of the line-SOR procedure, the convergence rate is still significantly faster than what is
obtained with a simple point Jacobi method. It follows that the line-SOR procedure would
serve as a better preconditioner than the Jacobi preconditioner. A further advantage of
using the line-SOR as a preconditioner is that this procedure only requires the solution of
tridiagonal systems and this can be accomplished with ease using the Thomas algorithm.
Thus, in the solver developed here, we have used the line-SOR procedure as a preconditioner
in the Bi-CGSTAB algorithm and find a significant improvement in the convergence rate
over a simple line-SOR iterative procedure. In Fig. 7 the convergence rate of the line-SOR
and Bi-CGSTAB for solution of the pressure equation on a 100× 100 uniform Cartesian
mesh has been compared. The flow configuration corresponds to low Reynolds number flow

FIG. 7. Convergence rate of line-SOR and Bi-CGSTAB applied to the pressure equation for a typical problem.
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past a circular cylinder and Fig. 7 shows the convergence of the pressure equation at the
first time-step where the initial residual is extremely large. One iteration of the Bi-CGSTAB
procedure requires two applications of the preconditioner and furthermore in addition to the
preconditioning steps, the Bi-CGSTAB procedure also incurs a small but non-negligible
overhead in its other steps. Therefore, in order to make a fair comparison between the
two iterative methods, we have estimated the CPU time taken by one line-SOR iteration
and designated this as one work unit. The CPU time used in one Bi-CGSTAB iteration
is then estimated in terms of this work unit. In Fig. 7 we have plotted the residual in the
pressure Poisson equation against the work units for the two different iterative schemes. The
overrelaxation parameter chosen for this calculation is equal to 1.2 and for the geometry
and grid in this particular simulation, this value results in the fastest convergence. We have
also found that this optimum value of the relaxation parameter varies by less than 10% for
all the various test cases that we have simulated. The plot clearly shows that Bi-CGSTAB
is about six times faster than the line-SOR procedure. Given this significant convergence
acceleration and the fact that Bi-CGSTAB can be implemented with relative ease, we find
this to be an ideal methodology for solving the pressure Poisson equation in the current
Cartesian grid method.

This completes the description of the current simulation methodology. It should be pointed
out that although we have described the methodology only in the context of 2-D geometries,
the interpolation procedure developed here is in principle extendable to three-dimensions.
The key aspects to be addressed in extending this methodology to 3-D are efficient meth-
ods for representing curved 3-D interfaces and reconstructing boundary cells and further
refinement of the solution procedure for the pressure equation. In the following sections we
will focus on validating this methodology by simulating some canonical flows and demon-
strating the capabilities of the method for simulating flows with complex immersed solid
boundaries.

3. RESULTS AND DISCUSSIONS

(i) Wannier Flow

The most straightforward way of verifying the second-order spatial accuracy of the
present method is to compute a flow which has a curved immersed boundary and one for
which an analytical solution exists. The flow chosen here corresponds to two-dimensional
Stokes flow past a circular cylinder placed next to a moving wall. The exact solution to this
flow was given by Wannier [39] and is reproduced in Appendix 2. Here we have simulated
this flow using our solver on four different uniform meshes. The meshes have equal spacing
in thex andy directions and haveNx andNy points in these two directions, respectively. In
order to simulate Stokes flow, the convection terms have been turned off in our simulation.
Computations have been carried out in the domain shown in Fig. 8 with the exact solution
imposed on boundaries. Both the L1 and L2 norm of the global error have been computed
as

ε1 = 1

Nx Ny

Nx Ny∑
j=1

∣∣φnumerical
j −φexact

j

∣∣ and ε2 =
(

1

Nx Ny

Nx Ny∑
j=1

(
φnumerical

j −φexact
j

)2

)1/2

(32)
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FIG. 8. Computational domain for Wannier flow simulation and the computed streamline pattern.

and in Fig. 9 we show a log–log plot of the errors in both velocity componentsu andv
versusNy. Also shown is a line with a slope of−2 which corresponds to second-order
accurate convergence. The plot clearly shows that the global error in our computed solution
decreases in a manner consistent with a second-order accurate scheme. This test therefore
proves that the current approach of treating the fluxes in the boundary cells does indeed
result in a solver which is globally second-order accurate.

(ii) Flow Past a Circular Cylinder Immersed in a Freestream

The exact solution of the Wannier flow allows us to confirm the accuracy of the solver
in the Stokes flow regime. Here we validate the solver in the finite Reynolds number
regime by simulating steady and unsteady flow past a circular cylinder immersed in an
unbounded, uniform flow over a wide range of Reynolds numbers where the Reynolds

FIG. 9. Global error inu andv versus number of mesh points for Wannier flow. Solid and dashed lines indicate
L1 and L2 norm of the error, respectively.



226 YE ET AL.

FIG. 10. Non-uniform mesh used for low Reynolds number simulation of flow past a circular cylinder. Only
every other grid line is shown in both directions.

number is defined as Red=U∞d/v with d the cylinder diameter andU∞ the freestream
velocity. This flow had been studied quite extensively in the past and a number of numerical
and experimental datasets exist for this flow which are useful for the purpose of validation.
Simulations have been performed at Red= 20, 40, 80, and 300 and results compared with
established experimental and numerical results. All these simulations have been performed
in a large 30d× 30d domain so as to minimize the effect of the outer boundary on the
development of the wake and Fig. 10 shows the 152× 156 non-uniform mesh used in the
low Reynolds number simulations. At the inlet and top and bottom boundaries we specify
velocity corresponding to potential flow past a cylinder and a homogeneous Neumann
boundary condition is applied at the exit boundary. We have also tested larger domain sizes
in order to ensure that the results presented here are independent of the domain size. For all
these simulations we first impose a small asymmetric disturbance at the inflow boundary
for a short period of time and then allow the flow to evolve naturally after this. For Red= 20
and 40 the wake eventually attains a steady symmetric state and this is consistent with the
well established result that the cylinder wake is stable to perturbations below Red= 46± 1
[16, 27, 41]. Once the flow has reached a steady state we compute the drag coefficient defined
byCD = drag force/(1/2)ρU2

∞d and the length of the recirculation zone and compare these
with established results.

The streamline plots in Figs. 11a and 11b show the mean recirculation regions behind
the circular cylinder at Red= 20 and 40, respectively. In this steady flow regime, results
using the current method are compared in Table I to the numerical simulation by Dennis
and Chang [9] as well as experimental measurements of Tritton [34]. It is found that our
results compare well with the other numerical simulations and experiments.
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FIG. 11. Streamline plot of flow past a circular cylinder. (a) Red = 20, (b) Red = 40.

It is generally accepted that the wake of a cylinder immersed in a freestream first becomes
unstable to perturbations at a critical Reynolds number of about Red= 46± 1 [16, 27].
Above this Reynolds number, a small asymmetric perturbation in the near wake will grow
in time and lead to an unsteady wake and Karman vortex shedding. This is indeed what we
find for our simulation at Red= 80 which has been carried out on a 217× 183 non-uniform
mesh. Figure 12 shows the variation of the lift and drag coefficient with time and it shows how
vortex shedding develops to a periodic state in time. The computed mean drag coefficient
from the current simulation is about 1.37 which lies between the two experiments [34, 40].
The vortex shedding Strouhal number defined asSt= f d/U∞, where f is the shedding
frequency, is one of the key quantities that characterizes the vortex shedding process. Here
we have estimated the Strouhal number from the periodic variation of the lift coefficient
and the value comes out to be 0.15 which compares very well with the value obtained from

TABLE I

Comparison of Mean Drag Coefficient, Length of Wake BubbleLw (Measured from Rear End

of Cylinder), and Strouhal Number with Established Results

20 40 80 300Reynolds number→

Mesh→ 152× 156 152× 156 217× 183 217× 183

Study↓ CD Lw/d CD Lw/d CD St CD St

Tritton [34] 2.22 — 1.48 — 1.29 — — —
Weiselsberger [40] 2.05 — 1.70 — 1.45 — 1.22 —
Dennis and Chang [9] 2.05 0.94 1.52 2.35 — — —
Fornberg [11] 2.00 0.91 1.50 2.24 — — — —
Mittal and Balachandar [21] — — — — — — 1.37 0.21
Williamson [41] — — — — — 0.15 — 0.20
Current 2.03 0.92 1.52 2.27 1.37 0.15 1.38 0.21
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FIG. 12. Variation of lift and drag coefficients with time for Red = 80.

experiments [41]. Figure 13 shows a plot of the streamline pattern and spanwise vorticity
contour at one time instant and both plots show the classical Karman vortex street.

In addition to the low Reynolds number simulations, we have also carried out a simulation
at a moderately high Reynolds number of 300. This simulation serves to demonstrate that
the current methodology is capable of resolving thin boundary layers that develop in flows
at these Reynolds numbers. The mesh used for this simulation is the same as the one used

FIG. 13. Instantaneous streamline plot and vorticity contour plot in the near wake of the circular cylinder for
Red = 80, (a) streamline plot, (b) vorticity contours.
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FIG. 14. Variation of lift and drag coefficients with time for Red = 300.

for Red= 80. This is a relatively coarse mesh and this coarse resolution severely tests
the discretization scheme used in our solver for the boundary cells. Figure 14 shows the
variation of lift and drag coefficient obtained from our simulation. The mean drag and
Strouhal numbers have been computed from these time varying quantities and are included
in Table I. It can be seen that these agree very well with the 2-D spectral simulation of Mittal
and Balachandar [21] and the Strouhal number also matches well with the experiments
of Williamson [41]. It should be pointed out that at this Reynolds number the cylinder
wake is intrinsically three-dimensional whereas our simulation is two-dimensional and
therefore does not allow spanwise variations. As shown by Mittal and Balachandar [19] one
consequence of performing a 2-D simulation in this regime is that the drag is typically over-
predicted. This is indeed what we observe for the current simulation. Thus, even though
our mean drag matches with the other 2-D simulation, it is about 12% higher than the
experimentally determined value of Weiselsberger [40].

In Fig. 15 we have shown contour plots of spanwise vorticity at one time-instant.
Figure 15a shows a view of of the wake that extends to about 10d downstream from the
cylinder and as expected, this plot shows the formation and evolution of compact Karman
vortices in the wake. Figure 15b is a closeup view of the flow around the cylinder and the
mesh superposed on the greyscale contour plot clearly shows that there are fewer than five
points in the attached boundary layer. It can be seen that even with relatively low resolution
provided here, the boundary layers on the cylinder surface are smooth indicating that the
current treatment of the boundary cells adequately resolves thin boundary layers. It is useful
to point out that for the Red= 300 simulation the average CPU time required to complete
one time step is about 3 s on a DECAlpha workstation equipped with a 533 MHz processor
and one shedding cycle requires about 675 CPU seconds.

(iii) Flow past A Circular Cylinder in a Channel

In addition to the case of flow past a cylinder immersed in a freestream, we have also
validated our method by computing flow past a cylinder of diameterd placed symmetrically
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FIG. 15. Spanwise vorticity contour plots in the wake of the circular cylinder for Red = 300. (a) View extending
to 9d downstream of cylinder. (b) Closeup view showing the resolution provided to the attached boundary layers
and separated shear layers.

in a planar channel of heighh. A 195× 73 grid is used for these simulations and Fig. 16
shows a schematic of the flow configuration that has been simulated here. A parabolic
profile is specified at the channel inlet and the two main parameters in this flow are the
blockage ratioβ = d/h and the Reynolds number defined as Re= Q/v whereQ denotes
the inlet volume flux. A systematic numerical study of this flow configuration over a range
of parameters has been conducted by Chenet al. [7] and results from this study are used
to validate our simulations. This flow shares some features with the case of a cylinder
immersed in a freestream. In particular, vortex shedding is also observed in this flow beyond
a critical Reynolds numbers. However, the critical Reynolds number is a strong function
of the blockage ratio. Furthermore, the development of the vortices is also significantly

FIG. 16. Flow configuration for simulation of flow past a cylinder placed symmetrically in a planar channel.



GRID METHOD FOR INCOMPRESSIBLE FLOWS 231

affected by the boundary layers that develop on the channel walls. Thus, overall this is a
more complicated flow and a good test case for our simulation methodology.

In our simulations we have focussed on predicting the critical Reynolds number for a
blockage ratio of 0.2. The bifurcation analysis of Chenet al. [7] indicates that for this
particular blockage ratio the critical Reynolds number is 231. We have performed a series
of simulations ranging from a Reynolds number of 225 to 240 in order to pinpoint the
critical Reynolds number. In each of these simulations, we provide a small asymmetric
perturbation to the inlet flow for a short time period and subsequently allow the flow to
develop naturally to a stationary state. In Fig. 17 we have plotted the temporal variation of
the vertical velocity at one point in the near wake of the cylinder which directly indicates
the growth or decay of the disturbance in the wake. Figure 17 shows that the perturbation
reduces for Reynolds numbers up to 230 whereas it grows for Reynolds numbers greater
than 232. Spanwise vorticity contours at a time instant corresponding tot Q/h2= 100 have

FIG. 17. Temporal variation of vertical velocity at one point in the wake of the cylinder.



232 YE ET AL.

FIG. 18. Spanwise vorticity contours for flow past a cylinder in channel for various Reynolds numbers at
t Q/h2= 100.

been plotted in Fig. 18 for all these five Reynolds numbers and we observe that for Re= 225,
229, and 230 the wake has for the most part recovered its symmetric state. Substantial loss
in symmetry can however be observed in the downstream region of the wake at Re= 232
and this is accompanied by a weak flapping of the downstream end of the two attached
shear layers and weak vortices are observed forming in the downstream wake. Finally, at a
Reynolds number of 240, we observe vigorous vortex shedding in the wake of the cylinder.
The critical Reynolds number predicted by our calculation is therefore between 230 and 232
which is in very good agreement with Chenet al. [7]. Furthermore, the Strouhal number
defined asf dh/Q where f is the shedding frequency can be computed from the temporal
variation of the vertical velocity and for Re= 240 we obtain a Strouhal number of 0.17
which is identical to that obtained in the simulations of Chenet al. [7]. Thus all results from
the current set of simulations match very well with the results of Chenet al. [7] which have
been obtained using a body-fitted grid.

(iv) Application to Complex Geometries

We have verified the accuracy and fidelity of the solver for some relatively simple canon-
ical flows. The main objective of the current work however is to develop an accurate and
efficient numerical method that will allow us to simulate flows with extremely complicated
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internal boundaries on simple Cartesian grids. We now demonstrate this capability of the
solver by presenting results of two numerical simulations which involve flows with highly
complex immersed boundaries.

(a) Flow past a random array of cylinders.The first complex configuration that we
have simulated is that of flow past a random array of 95 cylinders. The random array is
created in two steps; first we create a regular staggered array of 95 cylinders. Following
this, the cylinders are moved in a randomly chosen direction by a fixed distance of 0.2d
whered is the cylinder diameter. This procedure allows us to obtain a randomized array
while maintaining some control over the minimum distance between two cylinders. A
uniform inflow velocity is prescribed at the left boundary and a homogeneous Neumann
exit boundary condition is applied at the right boundary. Furthermore, periodic conditions
are used on the top and bottom boundaries. This configuration which is of relevance to
porous media and heat exchanger applications represents a geometry which is extremely
complex and one which would pose a serious challenge for a structured or unstructured grid
generation routine. Here we have simulated this flow using a 250× 250 uniform Cartesian
mesh. The Reynolds number based on the inlet flow velocity and cylinder diameter is about
24. This Reynolds number is low enough that the flow eventually attains a steady state.
However, at this Reynolds number we do expect to see complex recirculation zones behind
the cylinders.

Figures 19a and 19b show the steady state pressure variation and streamlines, respec-
tively. In Fig. 19a dark and light contours indicate high and low pressure, respectively. As
expected, there is a significant drop in the pressure as the flow passes through the array
and computed results indicate that on average,(pout− pin)/(1/2)ρU2

∞≈−66. The plotting
package TECPLOT has been used to compute the streamlines from the velocity field and
in addition to the equispaced streamlined introduced at the inlet, we have also introduced
additional streamlines in the cylinder wakes in order to clearly show the recirculation zones.
The streamlines exhibit extremely tortuous paths and this is typical of flows in randomized
arrays [13]. We find that the current method has no difficulty in resolving the complex flow
pattern and recirculation regions formed behind the cylinders.

(b) Flow past a cascade of airfoils.The second flow configuration we have chosen to
simulate is of relevance to turbomachinery applications. It consists of flow past a periodic
array of airfoils configured in a way similar to that found in a typical turbine or compressor. It
should however be pointed out that all the airfoils here are stationary. Similar to the random
array simulation, an inflow velocity is provided at the left boundary and a homogeneous
Neumann exit boundary condition is applied at the right boundary. Furthermore, periodic
conditions are used on the top and bottom boundaries. It is worth mentioning that this is a
particularly severe test of the current methodology since the airfoil is only about four grid-
spacings wide near the trailing edge and therefore the boundary cell discretization scheme
has to contend with large curvatures. The Reynolds number based on the axial chord of the
airfoil is 200 and a 400× 250 uniform mesh is used for this simulation. The flow at this
Reynolds number is inherently unsteady and Fig. 20a shows the streamline pattern at one
time instant. It can be observed that a number of recirculation zones are in various stages
of formation. Figure 20b shows the corresponding spanwise vorticity pattern and this plot
gives a hint of complex vortex–vortex as well as vortex–body interactions that occur in this
flow. Despite the relatively coarse resolution of the trailing edge geometry we find that the
solver has no difficulty in obtaining the solution for this flow.
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FIG. 19. Flow past a random array of 95 cylinders. (a) Pressure contours. Light and dark shades indicate high
and low pressure, respectively. (b) Corresponding streamline pattern.
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FIG. 20. Flow past a cascade of airfoils at one time instant. (a) Instantaneous streamlines, (b) corresponding
spanwise vorticity contours.

4. CONCLUSIONS

A finite-volume based Cartesian grid method has been developed which allows us to
simulate unsteady, viscous incompressible flows with complex immersed boundaries. The
underlying method is based on a colocated arrangement of variables and a second-order
central difference scheme is used for spatial differencing. Furthermore, the solution is
advanced in time using a two-step fractional-step scheme. A new interpolation framework
has been devised which allows us to systematically develop a spatial discretization for the
cells cut by the immersed boundary that preserves the second-order spatial accuracy and
conservation property of the underlying solver. This is especially crucial for the current
solver since we plan to use it for simulating flows at moderately high Reynolds numbers. In
such flows, relatively thin boundary layers are expected to form on the immersed boundaries
and these have to be resolved adequately in order to obtain an accurate representation of the
flow. We have found that the presence of immersed boundaries alters the conditioning of



236 YE ET AL.

the linear operators and slows down the iterative solution of the pressure Poisson equation.
In the current solver, the convergence is accelerated by using a preconditioned conjugate
gradient method where the preconditioner takes advantage of the structured nature of the
underlying mesh.

The second-order global accuracy of the solver has been confirmed by simulating Stokes
flow past a circular cylinder placed near a moving wall and comparing with the exact
solution provided by Wannier [39]. Simulations of flow past a circular cylinder immersed
in a uniform freestream have also been carried out in the Reynolds number range from
20 to 300. Key quantities such as mean drag coefficient, length of recirculation zone, and
vortex shedding Strouhal number obtained from our simulations agree well with established
experimental and numerical results. We have also simulated flow past a circular cylinder
placed in a channel and we find that the solver is able to predict the critical Reynolds number
of vortex shedding with a high degree of precision.

The main advantage of the current approach is that flows with extremely complex internal
boundaries can be simulated with relative ease on simple Cartesian meshes. In order to
demonstrate this capability of the solver, we have simulated two relatively complex flows.
The first involves flow through a large array of randomly placed cylinders at finite Reynolds
number and the second, flow through a cascade of airfoils at a relatively high Reynolds
numbers. These flow configurations have been chosen since they would require generation
of extremely complicated meshes if conventional structured/unstructured methods were to
be used. The current Cartesian grid solver is able to simulate these flows with ease thereby
demonstrating the advantage of the current approach for such complex flows.

APPENDIX 1

Accuracy of Linear-Quadratic Interpolating Function

In this section, we numerically demonstrate that the linear-quadratic interpolation proce-
dure results in second-order accurate approximation of fluxes on the face of the boundary
cell. Consider the trapezoid shown in Fig. 21 the size and shape of which is defined by the
parameters1, ξ , andζ . Comparison of this figure with Fig. 3b shows that this is a typical
situation encountered while computing the flux on the face of a boundary cell. The six points
marked on the trapezoid in Fig. 21 can be identified as the cell-enter locations in Fig. 3b.
The objective here is to demonstrate that given the value of a variableφ at these six points,
the value ofφ and∂φ/∂x at a point (designated byp in Fig. 21) on the line midway between
the parallel sides of the trapezoid can be obtained to second-order accuracy using a linear-
quadratic interpolation function of the form shown in (16). We first assume a particular
functional representation ofφ in the two-dimensional Cartesian space and the values ofφ at
the six marked locations are computed from this functional representation. For our study we
have chosenφ(x, y)= sin(x) cos(y). The greyscale contours in Fig. 21 show the variation
of this function and it can be seen that the function has noticeable gradients in the vicinity
of point p. The six values ofφ are now used in conjunction with our linear-quadratic inter-
polant to obtainφp and(∂φ/∂x)p. The error in these numerically obtained values is then
computed by comparing with the exact values which can be obtained directly from the given
functional form ofφ. Thus the error in the value ofφ is given byε= |φp− sin(xp) cos(yp)|
and for the derivative it is given byε= |(∂φ/∂x)p− cos(xp) cos(yp)|. The size of the trape-
zoid is now changed and the above procedure repeated for trapezoids of various sizes. In
the current procedure, we keepξ andζ constant and only change1. Thus, all trapezoids
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FIG. 21. Schematic showing the geometry of trapezoid used in our analysis of local accuracy. The greyscale
contours show the variation in the assumed functional form ofφ.

are similar in shape and their sizes are defined by the linear dimension1. Finally, the error
can be plotted as a function of1 and this allows us to deduce the order of accuracy of our
approximation.

In Fig. 22 is shown a log–log plot of the error inφp and(∂φ/∂x)p against1. Also shown
is a line with slope of two which indicates second-order accuracy. Four different values of

FIG. 22. Variation of local error in the estimation of variable values and derivatives on the face of a trapezoidal
boundary cell with the size of the trapezoid.
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1 have been used and the plot clearly shows that the error decreases with1 in a manner
consistent with a second-order accurate scheme. Furthermore, we have also confirmed that a
similar reduction in error is obtained at any point on the line AB. This proves that the linear-
quadratic interpolation procedure results in second-order accurate estimation of face-center
values and derivatives.

APPENDIX 2

Wannier Flow

Wannier [39] obtained the exact solution for Stokes flow past a spinning cylinder located
in the vicinity of an infinite wall moving in the horizontal direction. The flow is bounded by
the wall on one side and extends to infinity in the other directions. In our validation study
we have considered the case where the cylinder is not spinning and the exact solution for
this situation is given by

u = −2(A+ Fy)

α

[
(s+ y)+ α

β
(s− y)

]
− D − F ln

(
α

β

)
+ B

α

[
(s+ 2y)− 2y(s+ y)2

α

]
− C

β

[
(s− 2y)+ 2y(s− y)2

β

]
(33)

v = 2x

αβ
(A+ Fy)(β − α)− 2Bxy(s+ y)

α2
− 2Cxy(s− y)

β2
, (34)

whereu andv are the horizontal and vertical velocities respectively and the various param-
eters are defined as

A = − Uh

ln(γ )
, B = 2(h+ s)U

ln(γ )
(35)

C = 2(h− s)U

ln(γ )
, D = −U, F = U

ln(γ )
(36)

α = x2+ (s+ y)2, β = x2+ (s− y)2 (37)

s2 = h2− r 2, γ = h+ s

h− s
. (38)

In the above expressions,U is the velocity of the wall,r the radius of the cylinder, and
h the distance of the wall from the center of the cylinder.
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